

Multiaccess, Reservations & Queues

Philips Research, Volume 10

Editor-in-Chief
Dr. Frank Toolenaar
Philips Research Laboratories Eindhoven The Netherlands

Scope to the ‘Philips Research Book Series’

As one of the largest private sector research establishments in the world, Philips Research
is shaping the future with technology inventions that meet peoples’ needs and desires in the
digital age. While the ultimate user benefits of these inventions end up on the high-street
shelves, the often pioneering scientific and technological basis usually remains less visible.

This ‘Philips Research Book Series’ has been set up as a way for Philips researchers to
contribute to the scientific community by publishing their comprehensive results and theories
in book form.

Dr. Rick Harwig

Dee Denteneer • Johan S.H. van Leeuwaarden

Multiaccess,
Reservations &
Queues

ABC

Authors

Dee Denteneer
Philips Research
HTC 37 (WY5.005)
5656 AE Eindhoven
The Netherlands
dee.denteneer@philips.com

Johan S.H. van Leeuwaarden
Eindhoven University of Technology
and EURANDOM
5600 MB Eindhoven
The Netherlands
j.s.h.v.leeuwaarden@tue.nl

c© of the cover illustration by Paul Legeland, The Netherlands

ISBN: 978-3-540-69316-1 e-ISBN: 978-3-540-69317-8

Library of Congress Control Number: 2008929528

ACM Computing Classification (1998): B.8.1, C.2.1, C.4

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Foreword

Reservation procedures constitute the core of many popular data transmis-
sion protocols. They consist of two steps: A request phase in which a sta-
tion reserves the communication channel and a transmission phase in which
the actual data transmission takes place. Such procedures are often applied in
communication networks that are characterised by a shared communication
channel with large round-trip times. In this book, we propose queueing models
for situations that require a reservation procedure and validate their applicabil-
ity in the context of cable networks.

We offer two approaches to better understand the performance of these
reservation procedures, both based on mathematical modelling. The first, de-
compositional, approach proposes separate models for the request and the data-
transmission phase. In doing so, one ignores the detailed interactions between
the two phases of the reservation procedure. Thus, this approach provides in-
sight into the average packet delay but it fails to capture delay variations as
required for quality-of-service specifications. To obtain results on higher-order
statistics of the delay, we also take a second, integrated, approach based on
tandem queueing models with shared service capacity. It is shown that these
models can be used to derive accurate approximations for the packet delay in
reservation procedures. Moreover, insights obtained from these modelling ef-
forts lead to actual improvements in the data-transmission scheduling. These
theoretical claims are supported by simulations of data transmissions in cable
networks.

The book proceeds via the study of four key performance models, and
modifications to these: contention trees, the repairman model, the bulk service
queue, and tandem queues. As such, the relevance of our book is not limited
to reservation procedures and cable networks, and performance analysts from
a variety of areas may benefit, as all models have found applications in other
fields as well.

vi MULTIACCESS, RESERVATIONS & QUEUES

Acknowledgments. In 2000, Philips Research and the research institute
EURANDOM joined forces in the Pelican project to analyse reservation pro-
cedures for cable access networks with an approach based on mathematical
modelling. This has resulted in a large number of technical reports, patent
applications, publications, and two dissertations. In this monograph, we sum-
marise our main findings and theories and thereby complete this exciting task.

This monograph is thus the result of a collaborative effort, and we take this
opportunity to thank the various colleagues who have helped us in this un-
dertaking. Onno Boxma was the EURANDOM project leader in the Pelican
project and promotor of both DD and JvL; without him neither the project nor
the monograph would have seen the light. Sem Borst, Mike Keane, and Jacques
Resing acted as co-advisors to our theses; our thanks go out to them for their
contributions to the various chapters in this monograph, as well as for their
marked influence on the presentation of the material. In particular, Jacques
greatly contributed through our many joint projects [22, 23, 51, 111–113].

During the Pelican project, we have also collaborated with Ivo Adan
[4, 53], Onno Boxma [22, 23], Christian Gromoll [49], Ewa Hekstra-Nowacka
[78, 145], Guido Janssen [50, 87–89], Mike Keane [54], Verus Pronk [55, 78,
145], Ludo Tolhuizen [78, 145], and Erik Winands [4]. Some of the results
from these papers have found their way into this monograph.

In addition to those named above, there have been a number of participants
in the Pelican project, whose contributions are more implicit. Here, we take
the opportunity to thank them for their stimulus, which has helped a great deal
in shaping our work: Mark van den Broek, Sebastian Egner, Lerzan Örmeci,
Zbigniew Palmowski, Ronald Rietman, Vitali Romanov, Sabine Schlegel, Sai
Shankar, and Jaap Wessels. Paul Legeland helped in giving form to the mono-
graph with the drawings that can be found in Chap. 2.

This industrial research project could not have been carried out without the
support of the management of Philips Research. Our particular thanks go out to
Emile Aarts and Carel-Jan van Driel for their help in getting the Pelican project
going. We thank Philips Research and EURANDOM for providing stimulating
and enriching environments for both research and collaboration.

Contents

Foreword v

Part I Prologue

1. MULTIACCESS IN CABLE NETWORKS 3
1.1 Multiaccess Communication 3
1.2 Methods for Multiaccess 5
1.3 Data Transfer in Cable Networks 7
1.4 Performance Analysis of Cable Networks 10
1.5 Outline 13
1.6 Selected Bibliography 18

2. KEY MODELS 19
2.1 Contention Trees 19
2.2 The Repairman Model 24
2.3 The Bulk Service Queue 27
2.4 Tandem Queues with Shared Service Capacity 31

Part II Contention Trees

3. BASIC PROPERTIES OF CONTENTION TREES 37
3.1 Introduction 37
3.2 Formal Tree Models 39
3.3 Tree Statistics 47
3.4 Proofs 57
3.5 Conclusion 66

viii MULTIACCESS, RESERVATIONS & QUEUES

4. DELAY MODELS FOR CONTENTION TREES
IN CLOSED POPULATIONS 69
4.1 Introduction 69
4.2 Access via Contention Trees 73
4.3 Properties of the Basic Model 75
4.4 ROS Discipline 78
4.5 GROS Discipline 83
4.6 GPROS Discipline 84
4.7 Numerical Results 87
4.8 Conclusion 91

5. THE REPAIRMAN MODEL WITH GROS 93
5.1 Introduction 93
5.2 Model Description 95
5.3 Approach and Main Results 99
5.4 Transfer Map 102
5.5 Proofs of Theorems 105
5.6 Conclusion 111

Part III Bulk Service

6. METHODOLOGY 115
6.1 Historical Perspective 115
6.2 Generating Function Technique 119
6.3 Random Walk Theory 125
6.4 Wiener–Hopf Technique 128
6.5 Summary 131

7. PERIODIC SCHEDULING 143
7.1 Introduction 143
7.2 Model Description 144
7.3 Queue Length 145
7.4 Packet Delay 150
7.5 Numerical Results 156
7.6 Conclusion 158

Contents ix

8. RESERVATIONS WITH TRANSMISSION DELAYS 161
8.1 Introduction 161
8.2 The Delayed Bulk Service Queue 164
8.3 Adaptive Scheduling Strategies 171
8.4 Numerical Assessment 174
8.5 Conclusion 178

Part IV Shared Service Capacity

9. A TANDEM QUEUE WITH COUPLED PROCESSORS 189
9.1 Introduction 189
9.2 Model Description 190
9.3 Analysis of the Kernel 192
9.4 Boundary Value Problem I 196
9.5 Boundary Value Problem II 198
9.6 Performance Measures 201

10. A TWO-STATION NETWORK WITH COUPLED PROCESSORS 213
10.1 Introduction 213
10.2 Model Description 214
10.3 Performance Measures 217
10.4 Preemptive Priority 219
10.5 Boundary Value Problem 221
10.6 Conclusion and Further Research 225

Part V Epilogue

11. CABLE NETWORKS REVISITED 229
11.1 Introduction 229
11.2 Traffic Model 230
11.3 Total Average Packet Delay 232
11.4 Numerical Assessment 234
11.5 Further Research 237

x MULTIACCESS, RESERVATIONS & QUEUES

References 241

About the Authors 253

PART I

PROLOGUE

Chapter 1

MULTIACCESS IN CABLE NETWORKS

This book proposes and analyses delay models for communication over
a shared channel by means of a reservation procedure. In this introductory
chapter, we discuss in general terms the main concepts for multiaccess com-
munication: Contention resolution and reservation procedures. We then turn to
cable networks and describe in some detail the current protocols to transmit
data. Moreover, we give examples, obtained by complex system simulations,
of the specific performance issues that arise in the evaluation of these networks.
These examples have strongly motivated our research effort, in which we aim at
complementing the simulated results with analytical models and calculations.

1.1 Multiaccess Communication

Multiaccess communication is a well established research topic, see, e.g.
Bertsekas and Gallager [14], Hayes [77], or Tanenbaum [160]. The central
setting of multiaccess communication is that a number of entities use the same
communication channel to transmit messages. This setting will be familiar to
most of us from everyday experience. We all use the same channel (the air) for
talking. One of the issues associated with multiaccess communication is then
also clear from daily life: Speech becomes unintelligible if several people are
talking at the same instant.

The examples below serve to illustrate the wide variety of application areas
in machine-to-machine communication in which multiaccess communication
is relevant.

Example 1.1 Computer networks. In recent years, computers have be-
come interconnected to form computer networks. This enables them to ex-
change messages. Frequently, the link between two computers overlaps with
similar links between other computers. This is the case in wired and wireless

4 MULTIACCESS, RESERVATIONS & QUEUES

local area networks with either the Ethernet [122] or the IEEE 802.11 standard
[106], or in access networks with, e.g. the DOCSIS [58], the IEEE 802.14 [80],
or the DVB-DAVIC [59] standard.

Whatever the precise nature of the computer network and its links, transmis-
sion of different messages over the same link at the same time usually causes
interference which in turn causes message loss. Hence, mechanisms must be
implemented to achieve satisfactory link sharing.

A popular way to achieve this, and indeed the method implemented in the
protocols mentioned above, is time division: A message is only transmitted
successfully if it does not coincide in time with another message transmitted
over the same link.

Example 1.2 Radio frequency tagging. It is likely that in the near future
many consumer goods will be labeled with identification tags that can be read
automatically from a distance without line-of-sight, see Finkenzeller [67] or
Law et al. [107]. Tagging is useful for object tracking, as in luggage handling
in airports, or for automatic purchase handling in shops.

Tags are low-cost, passive devices. However, they can take energy from cer-
tain radio frequency signals emitted by a tag-reader. The power obtained from
this signal allows them to respond, and the response will typically contain an
identification of the tagged object. Upon receipt of this response, the tag-reader
can retrieve information relevant to the object from a database. This informa-
tion can then be used for a routing decision, as in luggage handling systems.
Alternatively, this information can be a price, so that the purchase can be han-
dled automatically.

If multiple tagged objects respond simultaneously to the activating radio
signal, the responses will interfere and the object identifications will be unin-
telligible to the tag-reader.

Example 1.3 On chip communication. Systems on Chips (SoCs) are in-
tegrated circuits that offer the functionality of a complete system on a single
chip; examples of SoCs are single-chip televisions, MPEG encoders, and so
on. These SoCs comprise an ever increasing number of basic devices, see,
e.g. Jantsch and Tenhunen [?]. These devices form the building blocks that are
combined to implement the full functionality of the system.

The devices must be interconnected. Currently, most SoCs have a shared
medium architecture for their interconnection network, most often a backplane
bus, see, e.g. Benini and de Micheli [13]. In this architecture, there is one
communication channel, the bus, that is shared by all the devices. In order
to transmit a message, a device must first gain bus mastership, because the
bus does not support simultaneously transmitted messages. Hence, bus arbi-
tration mechanisms are necessary when several devices attempt to use the bus
simultaneously.

Multiaccess in Cable Networks 5

In these three examples, there is contention for the use of the communica-
tion channel between the various nodes in the network. Conflicts cause mes-
sage loss, so that there is a need for some form of conflict resolution in order
to guarantee that every node eventually gets hold of the channel and can suc-
cessfully transmit its message. Ideally, the conflict resolution is organised in
such a way that successful message transmission is achieved in the shortest
possible time.

How to organise the conflict resolution depends on the context. Again,
examples from daily life may illustrate the point. For example, in dinner con-
versation, it is all right to just start talking when we think of something to say.
But in a business meeting it might be the chairman’s job to determine who
speaks next.

Basic methods to organise access in machine communication resemble these
simple examples. Thus in some protocols it is allowed that stations just attempt
transmission without consideration of other stations. Stations then continue
to transmit their message until it is successfully transmitted. Other protocols
dictate a more systematic approach in which stations take turns. Between these
extremes there is a whole spectrum of possible protocols. We now give a more
systematic account of these access methods.

1.2 Methods for Multiaccess

The standard references on computer networks [14, 77, 160] cover the ba-
sic methods for multiaccess: Frequency Division Multiple Access (FDMA),
Code Division Multiple Access (CDMA), and Time Division Multiple Ac-
cess (TDMA). With FDMA, stations are assigned different frequency chan-
nels, so that conflicts are avoided as collisions in a frequency band can no
longer occur. With CDMA, signals from stations are encoded in such a way that
conflicts with messages from other stations are experienced as ‘white noise’.
Thus, conflicts can be resolved as the noise can be removed using the appro-
priate decoders. We will be concerned exclusively with TDMA networks, in
which simultaneously transmitted messages are always corrupted. Therefore,
the channel must be divided over time among the different stations.

There are a number of techniques for implementing TDMA. Hayes [77],
Sect. 2.7.4, considers polling, token passing, and random access protocols to
achieve TDMA. In polling, a central server addresses all stations in the network
in turn. A station that receives a polling message can interrupt this polling cycle
to transmit messages. After this transmission, the polling cycle continues. In
token passing, there is no central entity that organises the access. Rather, the
stations pass a token among each other. This token is a licence to transmit,
so that the station in possession of the token can transmit its messages. Upon
completion of the transmission, it passes the token on to the next station.

6 MULTIACCESS, RESERVATIONS & QUEUES

Polling and token passing implement a systematic approach to multiaccess,
in which stations are polled, in fixed order, for data transmission. Conflicts are
thus avoided. The performance of these systematic approaches depends on the
characteristics of the network and the communication needs of the stations.
Generally, these techniques are less suitable if there are many stations in the
network and if their communication patterns are very bursty. In these circum-
stances, one prefers random access protocols, see Tsybakov [163].

The best known random access protocol is ALOHA, see Roberts [149]. Us-
ing ALOHA, stations transmit their messages immediately, without any coor-
dination with other stations. Therefore, conflicts can arise, and it is necessary
that the stations obtain some form of feedback concerning the success of their
transmission. This feedback can be obtained through an acknowledgement sent
by a receiving station or by a central scheduler. Alternatively, the station can
listen to the channel and detect transmission conflicts.

If a transmission error occurs, the station waits a random ‘back-off’ time
and then retransmits its message. This procedure is repeated, possibly with
increasing back-off times, until successful transmission. There are many vari-
ants of ALOHA that differ as to how this random time is exactly determined.
The best of these, slotted stabilised ALOHA, achieves a channel utilisation of
e−1 ≈ 36% for an open, infinite-population model with Poisson arrivals, see
Bertsekas and Gallager [14], Sect. 4.2.3.

In case the stations have the ability to quickly check channel status and inter-
rupt the transmission of their messages, improvements of ALOHA are possi-
ble. These improvements are called Carrier Sense Multiple Access (CSMA)
or Carrier Sense Multiple Access with Collision Detection (CSMA-CD).
Throughputs for these improvements depend on the speed with which trans-
mission errors can be detected, but are much larger than the 36% that can be
achieved with slotted stabilised ALOHA. In fact, if transmission errors can be
detected infinitely fast, throughputs arbitrarily close to 100% can be achieved
via CSMA-CD, which explains the wide-spread popularity of this protocol.

If it is impossible to quickly detect transmission errors, more sophisti-
cated random access protocols are preferable to ALOHA. These algorithms are
based on so-called contention trees as introduced independently by Tsybakov
and Mikhailov [164] and Capetanakis [30]. Using these techniques, the chan-
nel utilisation can be increased to approximately 49%, see Tsybakov and
Mikhailov [165] and Mosely and Humblet [127]. We defer a more elaborate
introduction of contention trees until Sect. 2.1.

Random access protocols can be used to directly transmit a message. How-
ever, they can also be used somewhat differently, as a signal to indicate the
intention to transmit a message, i.e. as a request message for data transmis-
sion. Once this intention has been successfully transmitted, the message itself
can be transmitted without the risk of being corrupted by interrupting mes-

Multiaccess in Cable Networks 7

sages. These approaches are known as reservation or request-grant procedures.
In such procedures, stations request access to the shared medium by sending
request messages in contention with other stations. The request messages will
be small, relative to the actual message to be transmitted, and run the risk of
being lost due to collisions with other requests. Hence, some form of conflict
resolution is needed to ensure that a request will eventually get through. How-
ever, once the request gets through, the station will, in due time, be granted
exclusive access to the channel so that it can transmit its messages without
colliding.

Reservation procedures have a clear advantage over transmitting complete
messages in contention with other messages: Only the small request messages
run the risk of being lost. Therefore, these reservation procedures have the
promise of efficient and fast data transmission. Not surprisingly, reservation
procedures have been extensively investigated and have found application in
many computer communication protocols.

In this book we develop analytical models for studying the delay in reser-
vation procedures. Many aspects of these models are relevant to all protocols
that implement conflict resolution. We are, however, motivated in particular
by the use of reservation procedures in cable networks that involve contention
trees. The models in this book are all developed to deal with specific issues that
arise in this context. We now first discuss cable networks and their reservation
procedures, and then turn to these modelling issues.

1.3 Data Transfer in Cable Networks

A schematic view of a cable network is given in Fig. 1.1. In order to transmit
messages the stations must use the upstream channel, which is shared with the
other stations. Messages can only be received via the downstream channel. As
stations cannot sense the upstream channel, they cannot communicate with
each other directly nor can they check the success of their own transmis-
sions. To provide the essential feedback, cable networks incorporate a central
scheduler referred to as the Head-End. The Head-End continuously senses the

Fig. 1.1. Schematic view of a cable access network with N stations connected to the Head-End
(HE)

8 MULTIACCESS, RESERVATIONS & QUEUES

upstream channel, observes the success or failure of transmitted messages, and
informs the stations about this by broadcasting status reports via the down-
stream channel.

A system’s account of the recent upgrade of cable networks to enable inter-
active services is given in, e.g. [15, 56, 57]. The multiaccess related details can
be found in, e.g. [40, 73, 74, 145, 150]. A number of standard protocols for data
transfer in cable networks have emerged and we review the issues that are most
relevant to this book. Important protocols are IEEE 802.14 [80], DVB-DAVIC
[59], and DOCSIS [58]; DOCSIS is by now the generally accepted standard.
These standards describe in great detail the physical elements of the network,
the channel medium, the formats of the signals, the conversion of packets into
signals and vice versa, the error correction, etc. We largely ignore the physi-
cal details of data transmission and concentrate on the medium access control
(MAC) layer.

Computer communication is commonly organised as a stack of layers, the
OSI stack, see, e.g. [14], Sect. 1.3.2. Each layer in this stack offers specific
functionalities to the above layers that are needed to establish a connection. In
this system view, the data link layer is situated between the physical layer and
the network layer. The MAC sublayer is considered as lower part of the data
link control layer and regulates the multiaccess channel.

The protocols describe a variety of methods for data transmission, and differ
as to which methods are allowed. Generally, it is possible to transmit data both
directly and via the reservation procedure. We will concentrate on the analysis
of the reservation procedure and consider the following situation described in,
e.g. [59, 80]. Stations request access to the upstream channel for data trans-
mission by transmitting a request message. These requests are in contention
with the requests from other stations and are transmitted in time slots that have
been specifically designated by the Head-End as request slots. As requests can
collide with other requests, some form of conflict resolution must be imple-
mented in order to guarantee that every request will eventually get through
to the Head-End. We will focus on the situation in which conflicts between re-
quest messages are resolved by means of contention trees. These are introduced
in Sect. 2.1 and are extensively analysed in Part II of this monograph. After a
successful request, data transfer follows in reserved ‘data-transmission’ slots,
not in contention with other stations. These transmission slots are assigned by
the Head-End by means of a message broadcast via the downstream channel.

Stations communicate via an exchange of quanta of information called pack-
ets. Such a packet can be a request packet or a data packet. Usually, a request
packet is smaller than a data packet, and we consider the specific situation in
which it is three times as small as a data packet. The upstream channel is time
slotted. Each time slot can contain exactly one data packet. Alternatively, three
request packets can be fitted into one time slot.

Multiaccess in Cable Networks 9

This notion of a data packet as the basic unity of communication allows for
a more precise description of the reservation procedure described above. The
rule in this reservation procedure is that a station can make a request for data
transmission as soon as it has data to transmit. The request message contains a
field, called the request size, to indicate the number of data packets for which
transmission is requested. The request size equals the number of data packets
actually ready for transmission at the instant of the request attempt. Request
messages may be lost due to a conflict with other requests. In this case another
request message must be sent. This new request message is identical to its
predecessor, except for the value of the request size field: The request size may
be increased if the number of packets ready for transmission has increased
since the previous request attempt. This property is called ‘partially gated’ in
[14], Sect. 3.5.2.

Whether a time slot will be used for data or for requests is decided by the
Head-End, which periodically broadcasts the use of the next sequence of time
slots to all stations in the network. If a time slot is to be used for data, the Head-
End will also assign it to one of the stations, which can then use it, contention
free, to transmit data. If a time slot is to be used for requests, the Head-End can
restrict the use of this request slot to subsets of stations satisfying various crite-
ria. The decision whether to use a slot as either a request or a data-transmission
slot is usually taken simultaneously for groups of 18 consecutive slots, called
frames. The duration of such a frame is approximately 3 ms. The Head-End
employs a scheduling strategy to determine the frame layout and in particular
the number of request slots and the number of data-transmission slots. After the
layout has been determined, it is broadcast to all the stations in the network.

It is another important characteristic of cable networks that these scheduling
decisions concerning the frame layout must be taken well before the actual
start of the frame to which they correspond. There are a number of reasons for
this. Firstly, cable networks are large and the number of stations connected to
one Head-End is typically in the order of 100–1,000. As a consequence, such
networks can cover a wide area, and the distance between stations and Head-
End can be quite substantial. Hence, there is a non-negligible propagation delay
involved in transmitting a message from a Head-End to a station and vice versa.
Secondly, messages in cable networks are interleaved. This means that they are
spread out over time, so as to make the error correction more effective against
burst errors. However, this also increases the length of the message: The time
between the start of a message and its end. Thirdly, it requires processing time
at the Head-End to calculate the schedules and at the station to process and
interpret the schedules.

The length of the scheduling message (including interleaving) plus the prop-
agation times plus the processing times at both Head-End and station is non-
negligible and is at least about equal to the frame duration. Depending on the

10 MULTIACCESS, RESERVATIONS & QUEUES

implementation details, it can be larger, and information from the current frame
can only be used some frames later. Therefore, scheduling decisions must be
taken well in advance. In particular, there is a delay of at least some frames
before the data transfer corresponding to a request can actually be carried out.

In the remainder of this book, this delay will often be referred to as the
round-trip time. It is especially relevant for the model considered in Chap. 8.

1.4 Performance Analysis of Cable Networks

A common, simplifying, attempt to understand the performance achieved in
multiaccess systems is to view the shared channel as a kind of central ‘server’
that has to serve a stream of incoming messages, see, e.g. [14], Sect. 4.1. Such
models are known as open models, as the packets in the arrival stream are not
associated with specific originating stations. Using this approach, the analysis
of the delay in cable networks can then proceed along classical lines.

However, the discussion in Sect. 1.3 has emphasised a number of character-
istics that show that such a view has its limitations for the performance analysis
of cable networks. These limitations emerge mainly as a consequence of the
reservation procedure. Firstly, there are at most a finite number of stations that
can enter the contention procedure to transmit a request message. Thus, one
can expect that there is a finite-population effect that will show up in medium
to high load conditions, which is not captured by open models. Secondly, the
server must be shared by the reservation process and the data-transmission
process and the optimal tuning of these processes is complicated by the prop-
agation delay. The determination of the bandwidth allocated to either process
requires a scheduling policy, which does not have a counterpart in the simpli-
fying model described above.

As there are hardly any accurate models to assess the performance of cable
networks, their evaluation is usually carried out by means of simulations. We
have drawn in particular upon the simulation platform described in Kwaaitaal
[104] and Pronk and De Jong [144]. This platform was used to investigate the
performance of cable networks in [78, 145]. In the simulations, stations gen-
erate data packets according to a Poisson process. These are transmitted over
the cable network via a reservation procedure using contention trees. Perfor-
mance figures are recorded concerning queue sizes and packet delay, yielding
important insights. Moreover, it is possible to compare various slot scheduling
algorithms that are used in the Head-End.

We now review some of these simulation results. They demonstrate that
the finite-population effect and the scheduling effect do indeed manifest them-
selves as major issues in the performance analysis of cable networks. This sets
the main objective for this book: To formulate and analyse performance mod-
els that incorporate the finite-population effect and scheduling policies. These
models will then enable us to complement the simulations with analytical
calculations.

Multiaccess in Cable Networks 11

1.4.1 A Finite-Population Effect

In a first experiment, we compare the mean packet delay in three different
scenarios. In each scenario the stations generate data, identically and inde-
pendently, according to a Poisson process, but the scenarios differ in that the
number of stations in the network is varied. If we would use standard open
queueing models to predict the average delay, then there would be little differ-
ence between the three scenarios: As the superposition of a number of Poisson
processes is again a Poisson process, only the total traffic volume matters here.

Performance curves for this experiment are presented in Fig. 1.2 for the
cases that there are 50, 100, and 200 stations in the network. These curves dis-
play the average delay of a transmitted packet against the total traffic intensity
in each of the three scenarios. The performance curves for the three scenarios
differ considerably, and show that standard open models are not directly ap-
plicable in this situation. The simulation results thus point to a finite-population
effect: The number of stations in the network strongly affects packet delay.

This finite-population effect is observed in many system simulations of
cable networks. In Pronk et al. [145], Sect. 4.2, it is shown that this finite-
population effect also shows up in cable networks with other data-transfer
modes not considered here. Moreover, Golmie et al. [74], Fig. 17, report a
similar effect.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

50

100

150

200

250

net offered load (in Mb/s)

m
ea

n
pa

ck
et

 d
el

ay
 (

in
 m

s)

50 stations
100 stations
200 stations

Fig. 1.2. Delay vs. load curves for three different network scenarios, in which networks have
different numbers of stations

12 MULTIACCESS, RESERVATIONS & QUEUES

There is another salient feature in Fig. 1.2, extensively discussed in
Denteneer and Pronk [55], which concerns the capacity of the network. As a
preliminary fact, we mention that the capacity of the contention tree is approx-
imately log(3), see Sect. 3.3.1. This means that, on average, log(3) requests
can be processed during one time slot consisting of three request slots. The
maximum total traffic intensity in the simulations is approximately equal to
2 Mbps, which corresponds to a traffic intensity of 16 data packets per frame,
for frames of 18 slots as described in Sect. 1.3.

If the open queueing model is adopted as a model for data transfer in a
cable network, then it is easy to see that the transfer of each packet requires on
average (1+1/ log(3)) time slots: 1/ log(3) for the request and 1 for the packet
transfer itself, cf. [14], (4.59). This would limit the capacity of the network to
18/(1 + 1/ log(3)) ≈ 9.5 data packets per frame. However, this upper bound
on the capacity is well below the maximum value of 16 packets per frame,
mentioned above. This phenomenon can be explained if we consider a closed
queueing system. In this case packets originate from a particular station, and
it is well possible that stations ask for the transmission of more than one data
packet in one request. This further underlines that the models should reflect
that there are only a finite number of stations active in the network.

1.4.2 A Scheduling Effect

A second experiment is concerned with the scheduling of time slots as either
request slots or data-transmission slots. Here, we fixed a network scenario and
considered three different schedules to designate the use of the time slots in a
frame. In each of these schedules, scheduling decisions are frame-based. The
schedules originate from Pronk et al. [145] and each schedule guarantees a
different minimum number of time slots per frame for the request procedure.
These slots are devoted to handling requests in contention. The other time slots
in a frame are used for data transmission. If there are not enough data packets
to use the whole frame, the remaining slots are again used for handling requests
in contention.

In Fig. 1.3, we have displayed the simulated performance curves for three
distinct schedules. In the simulations, the number of slots guaranteed for the
request process equalled 3, 6 and 9, respectively, but the actual values are not
important for the discussion. Figure 1.3 shows that the different schedules
result in very similar performance at low loads. However, at high loads, the
performance curves deviate considerably. Hence, it is apparent that there is a
scheduling effect. Moreover, no schedule dominates the others. Rather, each
schedule is best in a selected subinterval of the traffic load.

This scheduling effect is not specific to the details of our simulations and
has also been observed in other simulations of cable networks. For instance, in
Sala et al. [150] system simulations are carried out using ALOHA for requests.

Multiaccess in Cable Networks 13

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

50

100

150

200

250

net offered load (in Mb/s)

m
ea

n
pa

ck
et

 d
el

ay
 (

in
 m

s)
3 slots
6 slots
9 slots

Fig. 1.3. Delay vs. load curves for three different ways to organise the contention process

First, they tested a greedy scheduling strategy, in which slots are only given
to the request process if there are no more data to transmit, i.e. if the data
queue is empty. It was observed that this strategy resulted in cyclic behaviour
of the data queue. Next, it was established experimentally that performance
improves if a certain minimum number of slots is guaranteed to requests. Also
Golmie et al. [73] consider various schedules for bandwidth allocation to either
requests or data transmission. Their results are similar and further stress the
relevance of these schedules.

1.5 Outline

Both the finite-population effect and the scheduling effect are prominent fea-
tures of delay in cable networks as shown by the simulation results reviewed
in Sect. 1.4. However, neither has been captured in the performance models for
cable networks that have been proposed to date. In this book, we attempt to fill
the gap and describe models that account for these effects.

Another way to view this book is suggested by the title and generalises the
scope from cable networks to reservation procedures and queueing models.
Thus, this book is about the delay analysis of the reservation procedure with
contention trees. Our interest is focused on the finite population case and a
communication channel with substantial round-trip times. We are now in a
position to give an outline of this book.

14 MULTIACCESS, RESERVATIONS & QUEUES

Part I: Prologue

In Part I, we review the basic notions of multiaccess, cable networks, as well
as the various key models that we build upon in the remainder of the book. In
fact, there are four fundamental points of departure for the models in this book:
Contention trees, the repairman model, the bulk service queue, and tandem
queues. As such, the relevance of this book is not limited to cable networks as
all models have found (or might find) application in other domains. The key
models are reviewed in Chap. 2.

Part II: Contention Trees

The first basic notion is the Capetanakis-Tsybakov contention tree introduced
in Capetanakis [30] and Tsybakov and Mikhailov [164]. Algorithms based on
contention trees are among the best known algorithms for conflict resolution;
we defer a more detailed description of contention trees until Sect. 2.1, where
we also give a brief introduction to the contention tree literature.

Part II presents our own contributions to the analysis of contention trees. In
Chap. 3, we give a mathematical account of the contention trees and present
two formal ways to describe their evolutions. Both ways are based on the com-
plete m-ary tree, also considered in Capetanakis [30] and Kaplan and Gulko
[93]. These models are used to analyse a number of basic properties of con-
tention trees. In Sect. 3.3.1 we consider statistics associated with the length of
the contention tree, and in Sect. 3.3.3 we review a modification of the standard
algorithm, named skipped level trees, which improves the standard contention
tree algorithm with respect to the time needed to resolve all conflicts.

We consider the success instants of a contention tree in Sect. 3.3.2. The
success instant measures the time from the start of the contention tree until
a successful conflict resolution and is thus related to the delay when using con-
tention trees. We use the models to give an expression for the marginal distrib-
ution of the success instant, see Theorem 3.3, and to prove that this expression
is asymptotically exact when the number of contenders tends to infinity, see
Theorem 3.4.

In Chap. 4, we extend the discussion to sequences of contention trees as
they are used in practice in dynamic environments. In these environments,
stations become inactive after having successfully transmitted their requests.
However, as the contention tree is being processed, inactive stations can be-
come active again when they have data to transmit. Hence, the basic contention
tree algorithm must be complemented with a ‘channel access protocol’ or ‘first
transmission rule’: A set of rules to regulate the behaviour of newcomers. In
Sect. 4.2, we review the standard channel access protocols: Free access and
blocked access. Section 4.2.1 describes an improvement of these standard pro-
tocols referred to as scheduled access. The scheduled access protocol improves
the basic access protocols both in terms of capacity and delay properties.

Multiaccess in Cable Networks 15

We then turn to the request delay, defined as the delay experienced by re-
quests made in contention via a contention tree. The complicated distributions
of quantities that depend on the contention tree algorithm preclude a complete
analytical treatment. However, the properties of the contention trees reviewed
in Chap. 3 suggest that queueing approximations are appropriate for contention
trees when used in dynamic environments. Moreover, the finite-population ef-
fect suggests that closed queueing models are appropriate.

The remainder of Chap. 4 is devoted to this theme and investigates closed
queueing systems to approximate the request delay for the three contention tree
protocols. It discusses a number of modifications of the so-called repairman
model and gives an analysis of the associated sojourn times, either exactly or
heuristically. The proposed modifications pertain to the service discipline. Next
to the First Come First Served (FCFS) service discipline, as in the standard
version of the repairman model, we also consider Random Order of Service
(ROS), Gated Random Order of Service (GROS), and Gated Partial Random
Order of Service (GPROS).

These modifications are all motivated by the various channel access proto-
cols that complement the basic contention tree algorithm. We will argue that
ROS is appropriate for contention trees with free access, that GROS is appro-
priate for contention trees with blocked access, and that GPROS is appropriate
for contention trees with scheduled access. These observations are supported
by simulations, in which we show that the analytical expressions for the first
moments of the sojourn time in these repairman models give excellent approxi-
mations to the corresponding moments of the request delay for contention trees
obtained by simulation.

The repairman model with GROS does not belong to the class of product-
form networks, see [10], and we only give a heuristic analysis of its delay
properties in Chap. 4. Motivated by the fact that cable networks are usually
large, we set out for a more precise mathematical analysis in Chap. 5 using as-
ymptotic analysis. This analysis is utilised to establish the limiting distribution
of the request delay, see Theorem 5.2.

Part III: The Bulk Service Queue

In Part III of this book, we turn to the data-transmission delay: The delay due
to the queueing of packets at the central scheduler, once a request has been
successfully transmitted. We model this part of the reservation procedure by
means of the bulk service queue. This is a discrete-time queueing model in
which a central server periodically serves a fixed number of customers that
arrive according to some random process.

A first introduction to the bulk service queue is given in Sect. 2.3. In Chap. 6
we give an extensive historical introduction of this queueing model, including
the main techniques to solve for the stationary distribution. In our treatment, we
give the rigorous mathematics, and provide guidelines for the numerical work.

16 MULTIACCESS, RESERVATIONS & QUEUES

The bulk service queue is introduced in particular to provide a mathematical
foundation to analyse the scheduling effect, described in Sect. 1.4.2. The clas-
sical bulk service queue can be used to model a simple schedule, in which a
fixed fraction of each frame is devoted to the request process. This is a wasteful
schedule, as it potentially leaves capacity unused. In Chap. 7, we formulate a
flexible-boundary model to represent a better scheduling policy. This schedule
was also used in Sect. 1.4.2, and guarantees a fixed minimum amount of slots
per frame for the request process. We show that this model can be solved by
means of the classical techniques from Chap. 6. However, it fails to accurately
capture the scheduling effect, as it does not account for the round-trip times on
the communication channel.

Motivated by this shortcoming, we propose to modify the classical bulk ser-
vice queue by including the delay as another additional element. Due to this
delay, arriving packets can only be ‘served’ after some delay period. We give a
thorough motivation for the delayed model in Sect. 2.3 and its detailed analy-
sis is reported in Chap. 8. Although the delayed bulk service queue defines a
higher-dimensional Markov chain, we are still able to solve for the station-
ary distribution of the queue, but the solution hinges on complicated numerical
procedures. However, we are able to obtain better insight in the expected queue
size by exploiting a method of Kingman [95] that leads to an insightful expres-
sion for the expected data-queue size as a function of moments of the arrival
distribution, a term related to the idle time, and an auto-correlation term. We
then bound the term related to the idle time, and apply a heuristic argument
to approximate the correlation term, so that we are able to approximate the
expected data-queue size of the delayed bulk service queue.

The approximating bounds are complemented with simulations to estab-
lish some interesting properties of the expected data-queue size. Firstly, the
expected data-queue size is increasing with the delay. Secondly, and rather
remarkably, the expected data-queue size is not monotonic in the traffic inten-
sity, so that a larger traffic volume may actually result in a substantially lower
expected data-queue size. Most importantly, however, the delayed bulk service
queue aids in the formulation of good scheduling policies to split the bandwidth
between the request and data-transmission processes. One such scheduling pol-
icy is obtained by a minimisation of the expected queue size with respect to the
amount of capacity guaranteed to the request process. A second, more adaptive,
schedule is derived by a minimisation of the burstiness of the arrival process,
which can be controlled through the request process. The latter property makes
the delayed bulk service queue suitable as a model for delay in cable networks,
see Sect. 1.4.2.

Multiaccess in Cable Networks 17

Part IV: Tandem Queues with Shared Service Capacity

The approaches from Part II and III enable a decompositional approach to
analyse the performance of reservation procedures, with separate models for
the reservation phase and the data-transmission phase. For an integrated ap-
proach, we introduce tandem queues. In the tandem queue, users arrive at a first
server, possibly queueing up if the server is busy. Upon service completion at
this first server, they move on to a second server, again queueing in front of this
server if this second server is busy. After being served at the second server, the
users leave the system. In the classical tandem queue, the servers work inde-
pendently of each other with a fixed service rate. We deviate from this classical
model in that the servers in our model share a common service capacity, and
this necessitates a service discipline that allocates the service capacity to the
servers.

In Chap. 9 we give a detailed treatment of the two-stage tandem queue with
shared service capacity. In order to do so, we need to make some rather restric-
tive assumptions. We assume that users arrive to the request queue according to
a Poisson process, and that they require exponentially distributed service times
at both queues. Under these assumptions, the tandem queue with shared service
capacity gives rise to a two-dimensional Markov process that can be analysed
using the theory of boundary value problems. A pioneering study of this type
of Markov processes is the one of Malyshev [115], whose technique was intro-
duced to queueing theory by Fayolle and Iasnogorodski [61]. We show that the
problem of finding the generating function of the joint stationary queue length
distribution can be reduced to a Riemann–Hilbert boundary value problem.

Starting from the solution of the boundary value problem, we consider the
issues that arise when calculating performance measures like the mean queue
size and the fraction of time a queue is empty.

In Chap. 10 we present a more general model of a two-station network with
shared service capacity. After receiving service at a server, a user either joins
the queue of the same server, joins the queue of the other server, or leaves the
system, each with a given probability. Users require exponential service times
at each server. This general network model covers both the model of Fayolle
and Iasnogorodski [61] and the two-stage tandem queue with shared service
capacity as special cases. We show that the general model can also be solved
using the theory of boundary value problems.

Part V: Epilogue

In Chap. 11, we return to our point of departure and reconsider the reservation
procedure in a cable network that motivated our work. In particular, we focus
on the delay in cable networks and use the models and their analyses to ap-
proximate the total average packet delay. We compare this approximation with

18 MULTIACCESS, RESERVATIONS & QUEUES

the delay figures that are obtained in system simulations of cable networks.
Moreover, we use the approximation to quantify the effects of suggestions for
scheduling made in this book. We conclude the book with a brief review of
open questions for further research.

1.6 Selected Bibliography

As acknowledged in our foreword, this book is the outgrowth of a project on
the mathematical analysis of access delay in cable networks. As such, it is
based on, and summarises, a number of publications, technical reports, patent
filings, and two dissertations. The dissertations are Denteneer [47] and Van
Leeuwaarden [109]. We now turn to a brief review of the publications and
technical reports.

In Chap. 1, we have built upon the simulation approach described in Pronk
and de Jong [144], Pronk et al. [145], and Hekstra-Nowacka et al. [78]. The
observations on the finite-population effect stem from Denteneer and Pronk
[55]. The material in Chap. 3 is based on Denteneer and Keane [54]. Chapter 4
is based on Boxma et al. [22, 23]. The sections on the gated service disci-
pline have appeared earlier as Denteneer [44, 45]. Scheduled access has been
extensively described in Denteneer [46]. The material in Chap. 5 is based on
Denteneer and Gromoll [49].

Chapter 6, on the bulk service queue, is taken from Van Leeuwaarden
[108]. Theorem 6.1 and the appendix of Chap. 6 are based on joint work with
Adan and Winands, see [4]. The first modification of the classical bulk service
queue, which couples the arrival process to the queue size, stems from Van
Leeuwaarden et al. [111]. The model and the main results from Chap. 8 are
taken from Denteneer and Van Leeuwaarden [52] and [50, 51, 53].

Chapters 9 and 10 are based on Van Leeuwaarden and Resing [112, 113].
The material in Chap. 11 stems from Denteneer [48].

Chapter 2

KEY MODELS

This book is about the study of a reservation procedure on a communication
channel with a large round-trip time. The study is carried out via the mathemat-
ical analysis of a number of key performance models: The contention tree, the
repairman model, the bulk service queue, and the tandem queue with shared
service capacity. In Chap. 1, we have briefly touched upon the four key models
that form the points of departure for this monograph. In this chapter, we give a
more extensive introduction to these models and motivate their use within the
context of a reservation procedure. Additionally, we give a brief introduction
to the vast literature available and highlight some of the original contributions
made in this book.

2.1 Contention Trees

Contention trees constitute a popular class of techniques to provide access to a
shared resource. They are used on shared, time-slotted, communication chan-
nels on which each transmission results in either a perfect transmission or a
collision. In case of a collision, all messages involved in the collision are com-
pletely lost and must be retransmitted at some later stage. Moreover, all trans-
mitting stations have the ability to detect conflicts, either by listening to their
own transmissions or via feedback from some central scheduler. Usually, it is
assumed that the feedback is immediate. In [59, 80], contention trees were pro-
posed as a means to resolve the conflicts among the colliding request messages
of the reservation procedure as used in cable networks.

Contention trees were introduced independently by Capetanakis [29] and
Tsybakov and Mikhailov [164]. Massey [119] and Bertsekas and Gallager [14]
both are excellent introductions to the subject. Further mandatory reading on
the subject is Volume IT-31, No. 2 of the IEEE Transactions on Information

20 MULTIACCESS, RESERVATIONS & QUEUES

Theory, which was completely devoted to the mathematical analysis of con-
tention trees. Another noteworthy reference is Janssen and de Jong [86].

The contention tree is initialised when a group of contenders collide, that
is, when multiple contenders transmit a message in the same slot. This group
of contenders is then, recursively, split by dividing the contenders over the
slots in the child node of the slot in which the collision occurred. The division
of contenders over the child slots is usually achieved by random choice and
each colliding station randomly selects one of the slots in the child node to
retransmit its message. Alternatively, identifying properties of the colliding
stations, such as identification numbers, can be used to carry out the split. The
splitting continues until all conflicts have been successfully resolved. This is
achieved as soon as all branches in the tree terminate in leaves that are either
empty or have a successful transmission.

This algorithm can be graphically depicted as a tree, or a cactus, as its re-
cursive splitting resembles the branching in either plant. This is illustrated in
Fig. 2.1. Note that each branch of the cactus is split into three subbranches.
The contention trees employed in cable networks share this ternary character,
as each non-terminal slot has a child node with three slots.

The use of such a random access technique raises several important ques-
tions. Firstly, one is interested in the efficiency of this technique. How long
does it take to resolve all the conflicts, given that there is a certain number of
stations initially involved in the conflict? Clearly, the faster the better, as this
reduces the time needed for the request phase and we will review a number
of variations on the basic contention tree that were specifically developed to
improve its efficiency. Secondly, one is interested in the delay caused by using
a contention tree, defined as the time elapsed between the initial conflict and
the successful reservation of some arbitrary station.

In the original contention tree, conflicts are resolved by recursively splitting
the group of contending stations into two subgroups. This splitting is organised
as follows. Each of the stations involved in the conflict randomly chooses one
out of two subgroups, labeled ‘left’ and ‘right’, say. The subgroups then await
their turn for retransmission, as indicated by the retransmission rule. Usually,
subgroup ‘left’ can retransmit immediately, whereas subgroup ‘right’ has to
wait until all of the conflicts in the corresponding subgroup ‘left’ have been
resolved. This process of splitting and retransmitting then continues until all
messages have been transmitted successfully.

This procedure can be depicted graphically by means of a cactus, see
Fig. 2.1, but Fig. 2.2 gives a more common representation. It shows how a tree
is formed when an initial group of stations is involved in a conflict, indicated
by the ‘c’ for collision, in the root of the tree. After each split, a subgroup
is formed. This subgroup can be empty, resulting in an empty time slot indi-
cated by ‘e’, it can consist of 1 station, resulting in a successful transmission

Key Models 21

Fig. 2.1. The recursive splitting resembles the branching of a tree, or a cactus

indicated by ‘1’, or it can consist of more stations so that another collision oc-
curs, indicated by ‘c’. In the latter case, this subgroup is split and the procedure
is repeated.

Instead of visualising the splitting procedure as a tree, one can describe the
procedure by means of a stack: After each collision, two subgroups are pushed
onto the stack, and one subgroup is popped from the stack at the retransmis-
sion instant. Therefore, this algorithm is also known as the ‘stack’ algorithm.
Note that the procedure can be implemented at each station by means of a
simple counter. Stations that transmit their packet for the first time and that

22 MULTIACCESS, RESERVATIONS & QUEUES

c

e c

c1

1 1

Fig. 2.2. Basic contention tree: Slots of the tree with a collision, i.e. an entry ‘c’, are recur-
sively split until all slots are empty ‘e’ or have a successful transmission ‘1’

experience a collision initialise their counter to 0 or 1, randomly chosen. After
this initial collision, stations with a counter equal to 0 may retransmit. Sta-
tions not involved in the retransmission add 1 to their counter if they observe
a collision and subtract 1 from their counter after an idle slot or a successful
transmission.

As an alternative to the stack (or depth-first) order, one can process the colli-
sions in the tree in breadth-first order. In this case, we traverse the tree by layer,
see Chap. 3 for a formal definition. This can be advantageous on a transmission
channel that is characterised by large round-trip times.

An improvement of this splitting algorithm is obtained by varying the num-
ber of subgroups after each collision, see [120]. Another improvement is based
on the following simple observation: If a ‘left’ subgroup is empty, then the
‘right’ subgroup will certainly consist of more than one station. Consequently,
the retransmissions by this right group will necessarily result in a collision.
Hence, a more effective conflict resolution can be achieved by skipping this re-
transmission and splitting this right subgroup before the retransmissions. This
observation is due to Massey [119] and leads to the modified tree algorithm.

The discussion above has not touched upon the issue of what to do with
newcomers, i.e. stations that need to transmit data but are not participating in
the tree algorithm. There are three well-known ‘channel access protocols’ that
regulate the access of newcomers: Free access, blocked access, and windowed
access. With free access, newcomers can participate in an ongoing tree, and
join the subgroup at the top of the stack. Thus, they can transmit at the first
possible transmission instant. In blocked access, newcomers must await the
completion of the current tree, and can only enter the contention process in
the root node of a new tree. Finally, windowed access, see Gallager [72], is a
form of blocked access in which only a limited set of newcomers is allowed
to participate in the root node of a tree. Often, this set is defined via a time

Key Models 23

Table 2.1. Comparison of (approximate) maximum stable throughput (MST), of various tree
algorithms formed by a channel access protocol (CAP), and tree algorithm (TA)

CAP TA MST

Free Basic 0.40
Blocked Basic 0.36
Blocked Modified 0.43
Windowed Modified 0.487
Windowed Basic 0.43

window, and only newcomers that have become active during this window are
allowed to participate in the new tree. The combination of windowed access
and the modified tree algorithm leads to the FCFS 0.487 algorithm, see Polyzos
and Molle [141].

Combining one of the two tree algorithms with one of the channel access
protocols results in a number of conflict resolution algorithms. These differ as
to the efficiency with which conflicts are resolved. One way to express this
difference is via the maximum stable throughput, which is defined as the max-
imum arrival rate (for a Poisson arrival process) that can still be handled by the
algorithm. In Table 2.1, we have listed the maximum stable throughputs of a
number of algorithms. The results in Table 2.1 show that the combination of
the modified tree algorithm with windowed access, with appropriate window
size, is the most efficient algorithm. Its delay analysis can be found in [141].

Yet, there are difficulties with the use of the modified algorithm in the
context of cable networks. The first difficulty is general and shows up in every
application of this algorithm in which the channel status is observed with error.
Assume that an idle slot is mistaken for a collision. In this case, the optimisa-
tion in the splitting rule, which leaves out ‘guaranteed’ collisions, will lead to
indefinite splitting. A second difficulty is more specific to cable networks, as
the optimisation is more difficult to implement on a channel with large propa-
gation delays.

Part II of this monograph is devoted to contention trees. We stick to the basic
tree algorithm, albeit that we consider general m-ary trees, in which subgroups
are split in m rather than two subgroups. Moreover, following Capetanakis
[29], we will allow the number of subgroups in the initial split to be different
from m. This can be considered as a combination of windowed access and the
basic tree algorithm.

There are a number of original contributions in this monograph concerning
access delay due to the tree algorithms. In Chap. 3, we study the delay due to
the basic blocked contention tree, when the collisions in the tree are processed
in breadth-first order. Another innovation is the use of the sojourn time in the
repairman model to approximate the access delay when using contention trees,
see Chap. 4.

24 MULTIACCESS, RESERVATIONS & QUEUES

2.2 The Repairman Model

The repairman model, see [64, 159], is one of the key performance models
for closed queueing networks, i.e. networks with a finite population of cus-
tomers. The repairman model is also known as the computer terminal model,
see Kleinrock [99], or as the time-sharing system, see Bertsekas and Gallager
[14]. The basic model is illustrated in Fig. 2.3. Depicted is a population of ants

Fig. 2.3. Basic repairman model

Key Models 25

searching for food. A soon as an ant has found something to eat, it joins a
queue in front of the ant hill. On entrance to the hill, the ant stores its catch and
resumes its search for food.

A more traditional description of the model is in terms of a repairman and
machines (see Fig. 4.1 in Chap. 4). There are N machines working in parallel.
After a working period a machine breaks down and joins the repair queue. At
the repair facility, a single repairman repairs the machines according to some
service discipline. Once repaired, a machine starts working again.

In this book, the repairman model is used to represent the request procedure.
The translation is as follows. The working machines stand for the inactive sta-
tions that are not participating in the request procedure. The machines in the
repair queue correspond to the machines that are active and participating in the
request procedure. Stations that are inactive may become active at a random
instant. In the parlance of the repairman model, stations break down and then
join the repair queue.

In the classical formulation of the model by Palm, see Feller [64], there
are N machines and K repairmen. The machines break down after a working
period. After this, they are served by one of the repairmen, and, once repaired,
the machine starts working again. If all repairmen are busy, the machines queue
up at the service facility until one of the repairmen becomes available.

One is typically interested in the fraction of time that all machines are work-
ing properly. A related issue is the optimisation of the cost of operation of the
machines. In particular, if costs can be assigned both to the unavailability of
the machines and to the hiring of repairmen, one can choose the number of
repairmen so that some sort of economic optimum is achieved. Another key
finding relates to the economies-of-scale: In specific situations, it is more effi-
cient to operate one system with N machines and K repairmen than to operate
K systems with each N/K machines and 1 repairman.

In later developments, the model has also received wide-spread popularity
as the computer terminal or the time sharing model, see, e.g. [14, 97, 99, 151].
In this version of the model the machines have been replaced by users at a
computer terminal and the repairmen are replaced by one central computer
which is shared by all users. After some thinking period the user submits a job
to this central computer. There the job is served. After service completion, the
job is returned to the user, who starts thinking again. Our use of the repairman
model is more akin to this computer application: Users are replaced by stations
contending to submit a request and the shared computer is replaced by a shared
medium to transmit the requests. We focus our investigations on the sojourn
time of a job at the central facility, which will then provide a measure for the
request delay, defined as the time needed to successfully transmit a request.

When assuming that both the working times and the service times are ex-
ponentially distributed, one can solve for the stationary distribution of the

26 MULTIACCESS, RESERVATIONS & QUEUES

number of working machines, which is a truncated Poisson distribution. The
number of working machines in the system behaves as the number of occupied
trunks in the Erlang loss system, see, e.g. Takács [159], Chap. 5, and the re-
pairman model shares the well known insensitivity property of the Erlang loss
system, which states that the distribution of the number of occupied trunks de-
pends on the distribution of the holding times only through the mean holding
time. Consequently, in the repairman model, the distributions of the number
of working machines and the number of machines in repair only depend on
the distribution of the working times via the mean working time. In [159] the
system is analysed with exponential working times and general service times.

The discussion so far has ignored the order in which the machines are re-
paired by the repairman. It is readily argued that the stationary distribution of
the number of working machines does not depend on this service discipline,
as long as the discipline is work conserving and does not pay attention to the
actual service times. However, this is not the case for the sojourn times at the
repair facility. In case of the First Come First Served service discipline and
exponential working and service distributions, the sojourn time distribution is
easily obtained from the distribution of the number of working machines and
the arrival theorem, see, e.g. Kobayashi [101] and Chap. 4. In case of the First
Come First Served service discipline, exponential working times, and general
service distribution, the sojourn times are studied in [159]. In Mitra [126], the
waiting times are studied for the processor sharing service discipline, again
under exponential assumptions. In Chap. 4 we extend this analysis to several
other service disciplines.

In the work discussed above, the attention focuses on a fixed system. An-
other stream of work relates to systems in which the system size increases. An
interesting observation to this end stems from Kleinrock. In [97], Sect. 4.11, he
considers a repairman model with exponential working and service time dis-
tributions, with parameters μ and λ respectively. Kleinrock observes that for
values of N that are much larger than μ/λ, the system behaves like a determin-
istic system, in which each additional machine causes all other machines to be
delayed by its entire average service time.

This observation can be formalised through an approach based on stochastic
process limits, see, e.g. Whitt [172]. In this approach, one considers a sequence
of models with repair speed μN parameterised by the number of machines N .
One then rescales the relevant processes in these models, such as the num-
ber of machines in repair, and studies these for N tending to infinity under
the Kleinrock-type condition that N is larger than μN/λ. The limits of these
rescaled processes then serve as rough approximations to these processes, and
enable the derivation of some asymptotic characteristics that are not amenable
to direct analysis. These approximations are then useful for large systems.

Key Models 27

A pioneering study to this end is given in Iglehart [81]. He considers a re-
pairman model with spare machines, a number of servers, and exponential ser-
vice and working times. In this setting, he obtains a limit theorem that can be
used to approximate the fluctuations in the number of machines in repair by
means of an Ornstein-Uhlenbeck process. This result can then in turn be used
to calculate transient characteristics. Results to this end can also be found in
Mandelbaum and Pats [118] and Krichagina and Puhalskii [103]. The latter
consider a closed queueing system which is equivalent to the repairman model
without spares and one server. The speed of the server may depend on the
number of machines in repair. Under the assumption of generally distributed
working times and repair times that have finite mean and variance, they estab-
lish the desired approximations to the queue size processes. Our approach in
Chap. 5 falls within this body of work on stochastic process limits.

In this book, we propose the repairman model as an appropriate model for
the access delay due to contention trees in a finite population setting. This
causes us to consider the repairman model with some new service disciplines:
Random Order of Service, Gated Random Order of Service, and Gated Partial
Random Order of Service, see Chap. 4. In Chap. 5, we build upon the asymp-
totic analysis in [103], to give an approximation to the sojourn time distribution
in the repairman model with Gated Random Order of Service.

2.3 The Bulk Service Queue

Bulk service is illustrated in Fig. 2.4. The sow can feed up to a certain number
of piggies simultaneously at a given time. The service discipline in a bulk ser-
vice queue combines this notion of bulk service with a notion of periodicity. It
is a discrete-time queueing model in which a central server periodically serves
a fixed number of customers that arrive according to some random process.

The bulk service queue is defined via the recursion

Xn+1 = (Xn − s)+ + An. (2.1)

Here, Xn denotes the queue size at the end of time slot n, An denotes the num-
ber of new arrivals during time slot n, the An are i.i.d. for all n, E(An) < s,
and x+ := max(x, 0). The integer-valued quantity s denotes the fixed capacity
of the server, i.e. the maximum size of the bulk served during one time slot.

In this book, the bulk service queue is used to represent the data queue of the
data-transmission phase of a reservation procedure. It is defined as the (con-
ceptual) queue that contains the packets for which transmission has been suc-
cessfully requested but that have not yet been transmitted. In Chap. 6, we give
a historical account of the developments concerning the bulk service queue.
We discuss both its usage and the methodology to solve for the stationary dis-
tribution of the queue size.

28 MULTIACCESS, RESERVATIONS & QUEUES

Fig. 2.4. Bulk service

One of our primary contributions to the bulk service queue is its adaptation
for usage in a reservation procedure. For this, as an initial step, we write (2.1) as

Xn+1 = (Xn − (f − c))+ +
c∑

i=1

Yni, (2.2)

Key Models 29

where the Yni form a sequence of i.i.d. random variables such that cE(Yni) <
f−c. With the obvious identifications s = f−c and An =

∑c
i=1 Yni, recursion

(2.2) reduces to (2.1).
Although (2.2) is just a trivial rewriting of (2.1), it is more suited to clar-

ify the relevance of the bulk service queue for the data-transmission phase of a
reservation procedure in cable networks, see Sect. 1.3. As explained there, such
a procedure is frame-based, and each frame consists of f time slots. A number
of these slots are devoted to the reservation procedure and a number of these
slots are devoted to the actual transmission of messages for which a successful
reservation has been made. Thus, in (2.2), it has been assumed that there are c
slots for the reservation procedure of which the outcome adds

∑c
i=1 Yni data

packets to the data queue. The remaining slots can be used for data transmis-
sion, so that during each frame, up to f − c packets are subtracted from the
data queue. Clearly, Xn denotes the size of the data queue at the beginning
of frame n. Figure 2.5 gives a graphical illustration of the process. The model
defined by (2.2) is referred to as the fixed boundary model in the remainder of
this monograph.

Clearly, if the data queue is empty at the beginning of a data slot, capacity
is lost in the fixed boundary model. Therefore, the second model considered is
one that designates the unused data slots as request slots, and is referred to as
the flexible boundary model, which reflects the fact that the division of a frame
into request and data slots can vary from one frame to another. This leads one
to consider the recursion

Xn+1 = (Xn − s)+ +
c+(s−Xn)+∑

i=1

Yni. (2.3)

We refer to the c request slots that are scheduled at the beginning of every
frame as forced request slots, and to the (s − Xn)+ slots as additional request

request slot data slot unused slot

Fig. 2.5. The fixed boundary model. A frame of f slots consists of c request slots, followed
by a maximum of f − c data slots. Packets that arrive during frame n cannot depart from the
queue until the beginning of frame n + 1

30 MULTIACCESS, RESERVATIONS & QUEUES

slots. Intuitively, the data-transmission schedule associated with the flexible
boundary model is more efficient than the schedule that goes with the fixed
boundary model, but one wants to have a clear quantitative understanding of its
potential benefits. We will provide such understanding in Chap. 7 by analysing
the packet delay in either model.

Recursion (2.3) still ignores the round-trip time that may be present in the
communication channel. To include this delay, we introduce a delay parameter
d and consider the following recursion:

Xn+1 = (Xn − s)+ +
c+(s−Xn−d)+∑

i=1

Yn−d,i. (2.4)

Finding the stationary distribution of the multi-dimensional Markov chain (2.4)
is much harder than finding the stationary distributions of the one-dimensional
Markov chains (2.2) and (2.3), see the appendix to Chap. 8.

For the fixed boundary model (2.2) we show in Chap. 7 that the probability
generating function of the stationary queue length follows from the solution
of the classical discrete bulk service queue. We next derive, using a more ad-
vanced technique, the probability generating function of the packet delay. From
these transform solutions, the entire probability distributions can be obtained,
as well as explicit expressions for performance characteristics like the mean
and variance. For the flexible boundary model (2.3) we obtain similar results,
although the derivation gets slightly more complicated. For both models we in-
vestigate the impact of the forced arrival slots c, in relation with other settings
like the frame length and type of arrival process. In Chap. 8 we derive for the
delayed bulk service queue (2.4) bounds and approximations to investigate the
influence of c and d on the mean and variance of the stationary queue length.
An exact analysis is reported in Appendix 8.B.

As a final model, we state a further generalisation of (2.4):

Xn+1 = (Xn − (f − cn))+ +
cn−d∑
i=1

Yn−d,i. (2.5)

In (2.5), cn stands for the number of time slots devoted to the request process
in frame n and {cn, n ∈ N} is a sequence of integers, subject to the constraints
0 ≤ cn ≤ f . The model requires a scheduling policy to decide on the value of
cn. One such policy is implicit in (2.4), and uses

cn = c + (f − c − Xn)+. (2.6)

In Chap. 8 we provide an alternative policy in which cn is computed from the
observed system values cn−1, cn−2, . . . and Xn, Xn−1, . . . and we show that it
improves upon the policy in (2.6) in that it considerably reduces the expected
data-queue size.

Key Models 31

2.4 Tandem Queues with Shared Service Capacity

In Fig. 2.6, we illustrate ‘shared service capacity’, in which one server must
divide its service capacity among various tasks. The tandem queues considered
by us are two node networks. Users arrive at the first node, where they are
served, and then move on to a second node. Upon service completion at the
second node, they leave the network. In tandem queues with shared service
capacity, the two nodes share a common capacity. Hence, these tandem queues
can be used as a model for a reservation procedure, see Fig. 2.7, under the

Fig. 2.6. Shared service capacity

32 MULTIACCESS, RESERVATIONS & QUEUES

Fig. 2.7. Schematic view of the upstream channel of a cable network regulated by a reservation
procedure

assumption that the delay is negligible. The capacity must be divided and we
assume that a proportion p of the capacity is given to the first node, and 1 − p
to the second node whenever both nodes are occupied.

The shared aspect shows up when one of the nodes is empty. First, we con-
sider the case that the proportion of the capacity allocated to the first node is
increased from p to 1, whenever the second node is empty. We will refer to
this scheduling discipline as partial coupling. Note that this is an appropriate
approximation to the flexible boundary model considered in Sect. 2.3 above: If
there are no jobs in the data queue (second node), the number of time slots for
the request queue (first node) is increased.

Under partial coupling, the service capacity of the first node depends on
the amount of work at the second node, and this interdependence between the
queues severely complicates the analysis. A natural extension of partial cou-
pling is then full coupling, where not only the capacity of the first node is
increased from p to 1 when the second node is empty, but the capacity of the
second node is also increased from 1−p to 1 when the first node is empty. Both
partial and full coupling guarantee a minimum rate p for the first node and 1−p
for the second node, whenever there is work to be done at the node in question.
However, contrary to partial coupling, full coupling is work-conserving in the
sense that the service capacity is always fully used, irrespective of one of the
queues being empty or not.

A service discipline that changes the service rates whenever one of the
queues is empty is known in the queueing literature as coupled processors.
If the coupled processors discipline is work-conserving, it reduces to full cou-
pling. Full coupling is better known as generalised processor sharing (GPS).
GPS is a popular scheduling discipline in modern communication networks,
since it provides a way to achieve service differentiation among different types
of traffic classes. For an overview of the literature on GPS we refer to Borst
et al. [19], and the references therein. Throughout this book, we will refer to
GPS/full coupling as coupled processors.

Key Models 33

When we assume that users arrive to the first node according to a Poisson
process, and that they require exponential service times at both nodes, no cou-
pling results in a tandem queue of two independent M/M/1 queues. Since
this is a standard Jackson network, the stationary joint queue length distribu-
tion possesses a pleasant product form, see p. 215 of this book.

This does not hold for partial and full coupling. These service disciplines
give rise to two-dimensional Markov processes that can be solved using the
theory of boundary value problems. This is because the joint queue length can
be modelled as a random walk on the lattice in the first quadrant, and belongs
as such to the class of nearest-neighbour random walks, in which only transi-
tions to immediate neighbours may occur. A pioneering study of these types
of random walks is the one of Malyshev [115], whose technique was intro-
duced to queueing theory by Fayolle and Iasnogorodski [61]. They analysed
two parallel queues with coupled processors, each queue having Poisson ar-
rivals and exponential service times. They showed that the functional equation
for the probability generating function of the joint queue length distribution
can be transformed to a Riemann–Hilbert boundary value problem. Cohen and
Boxma [39] have presented a systematic and detailed study of the technique of
reducing a two-dimensional functional equation of a random walk or queue-
ing model to a boundary value problem, and discuss in detail the numerical
issues involved. In particular, the analytic solution to the boundary value prob-
lem requires the determination of some conformal mapping, which can be ac-
complished via the solution of singular integral equations. In most cases, this
requires a numerical approach, see Cohen and Boxma [39].

Blanc [18] has investigated the transient behaviour of the ordinary two-
station tandem queue, so without coupled processors. In his analysis, Blanc
transforms the functional equation for the probability generating function of
the joint queue length distribution into a Riemann–Hilbert boundary value
problem, using the same technique as introduced by Fayolle and Iasnogorodski
[61]. For the two-stage tandem queue with coupled processors, Resing and
Örmeci [148] made a similar transformation. Other applications of the theory
of boundary value problems to queueing models can be found in [16, 33, 38,
39, 62, 63, 96, 123, 130] and the references therein.

For the two-stage tandem queue with coupled processors we show in Chap. 9
that the problem of finding the generating function of the joint stationary queue
length distribution can be reduced to two different Riemann–Hilbert boundary
value problems. We discuss the similarities and differences between the two
boundary value problems, and relate them to the computational aspects of ob-
taining performance measures like the mean queue length and the fraction of
time a queue is empty. Our detailed account of the numerical issues that arise
when implementing a formal solution to a Riemann–Hilbert boundary value
problem, is illustrative and may serve as an example for other types of queues

34 MULTIACCESS, RESERVATIONS & QUEUES

that can be solved using the same technique. For the two-stage tandem queue
with partial coupling we will show that the problem of finding the bivariate
generating function of the joint stationary queue length distribution can be re-
duced to a Riemann–Hilbert boundary value problem of a slightly different
type. The solution to this boundary value problem is more involved than the
one for the coupled processors discipline. We indicate how the solution to the
model with partial coupling can be obtained, but we do not discuss all the
details.

Next, in Chap. 10, we present a more general model of a two-station net-
work with coupled processors. After receiving service at a server, a user either
joins the queue of the same server, joins the queue of the other server, or leaves
the system, each with a given probability. Users require exponential service
times at each station. This general network model covers both the model of
Fayolle and Iasnogorodski [61] and the two-stage tandem queue with coupled
processors as special cases. We show that the general model can be solved
using the theory of boundary value problems. We also consider the case that
one of the queues has preemptive priority over the other queue. For this priority
case, we show that the generating function of the joint stationary queue length
distribution can be obtained directly from the functional equation without em-
ploying the theory of boundary value problems.

PART II

CONTENTION TREES

Chapter 3

BASIC PROPERTIES OF CONTENTION TREES

Contention trees constitute a popular class of algorithms to provide access to
a shared resource for a random population of contenders. In particular, they
can be used to transmit the request messages of a reservation procedure. In this
chapter, we explore the basic properties of contention trees. The main original
contribution of this chapter concerns our study of the delay experienced in the
use of a contention tree. For this we introduce the notion of success instant.
We give an approximation to the marginal empirical distribution of a success
instant and show that this approximation is asymptotically exact for an increas-
ing number of contenders.

3.1 Introduction

The use of contention trees was reviewed in Sect. 2.1. In this chapter, we will
ignore the details of the way in which contention trees are used, and concen-
trate on the basic properties that are common to all applications. Thus, we con-
fine attention to the basic m-ary tree to resolve a fixed number, n, of conflicts.

In such a tree, a group of colliding messages is recursively split into sub-
groups until all collisions are resolved. This recursive splitting can be depicted
graphically by means of a tree, and an example tree is given in Fig. 3.1 for
m = 3 and n = 8. The tree represents a collection of slots of the communi-
cation channel plus the number of transmission attempts in these slots. If the
number associated with a slot equals 0, then there is no transmission attempt in
this slot. The value 1 indicates that there is exactly one transmission in that slot,
and in this case we have a successful transmission. A value greater than 1 indi-
cates multiple transmission attempts. Consequently, all messages are lost and
must be retransmitted. This is done in the following way. A group of m slots
is designated as the child node of the slot in which the collision occurred. Any
colliding message is retransmitted in one of the slots in the child node, where

38 MULTIACCESS, RESERVATIONS & QUEUES

Fig. 3.1. Basic contention tree: Slots of the tree with a collision, i.e. an entry 〉1, are recursively
split until all slots are empty (0) or have a successful transmission (1)

Fig. 3.2. Same tree as in Fig. 3.1, with a breadth-first ordering of the slots

Fig. 3.3. Same tree as in Fig. 3.1, with a depth-first ordering of the slots

the slot is chosen at random and independently of the choice of the other mes-
sages. This splitting continues until all slots are either empty or contain one,
successful, transmission.

Contention trees have been well studied and we refer to Sect. 2.1 for an
overview of the literature. The statistic that has received the most attention is
the average length of the tree, given that initially n contenders collide in the
tree. In Janssen and de Jong [86], two additional statistics are introduced: The
number of levels required for a random contender to be successful and the
number of levels required to complete the tree. For all statistics, expressions
are given for the first two moments.

In this chapter, we study yet another statistic of the contention tree: The
success instant of a random station. To motivate this statistic, observe that, in
practice, the nodes correspond to the time slots of the communication channel
devoted to the contention resolution. So, the slots of the tree must be time-
ordered. Figures 3.2 and 3.3 represent the same tree as shown in Fig. 3.1, but
now time-ordered. Figure 3.2 displays a tree ordered according to the breadth-
first ordering, in which the nodes are ordered according to their distance to
the root node, see Sect. 3.2.2 for a formal definition. Figure 3.3 illustrates the
depth-first (or stack) ordering, in which the subtree starting with the first slot
of a node occurs before the subtree starting with the second slot of that node.

Basic Properties of Contention Trees 39

Using either time ordering, we can speak of success instants: The instants of
the successful transmissions relative to the start of the tree. In Fig. 3.2, the suc-
cess instants occur in slots 3, 7, 8, 11, 12, 14, 16, and 18. In Fig. 3.3, the success
instants occur in slots 4, 5, 8, 10, 11, 15, 16, and 18.

The main contribution in this chapter concerns our study of the delay ex-
perienced in using a contention tree, and in particular the expression for the
marginal distribution of the success instants. We confine ourselves to the case
of trees traversed in breadth-first order, as this is the more efficient ordering
in case of a communication channel characterised by large round-trip times,
see Massey [119]. To prepare the ground we introduce in Sect. 3.2 two for-
mal methods to describe contention trees. Moreover, we will derive the mar-
ginal and bivariate distributions, under the random splitting rule, of some of the
variables associated with these models. Next, in Sect. 3.3.1, we will use these
models to review some well known facts about contention trees. In Sect. 3.3.2,
we turn to the success instants. We will give an approximation to the marginal
distribution of the success instants, and show that this approximation is as-
ymptotically exact for an increasing number of contenders. In Sect. 3.3.3, we
consider the optimisation of contention trees via the introduction of skip lev-
els. We give proofs of the various theorems in Sect. 3.4. We conclude with a
brief summary, a generalisation to depth-first trees, and some ideas for further
research.

3.2 Formal Tree Models

In this section, we present two formal ways to describe a contention tree. Both
methods are based on the complete m-ary tree, also considered in Capetanakis
[30] and Kaplan and Gulko [93]. The method of Sect. 3.2.1 associates a num-
ber, the subgroup size, with each slot in a complete tree. Next, in Sect. 3.2.2,
we present a method that is based on infinite paths through a complete m-ary
tree. With the random splitting rule introduced in the introduction, the variables
associated with these descriptions become random variables. In Sect. 3.2.3, we
provide expressions for their marginal and bivariate distributions.

3.2.1 A Slot Based Description

The most obvious way to describe a contention tree is by associating a number,
the number of colliding messages, with each slot of the tree. To identify the
slots, we use strings over the symbols {1, . . . , m}. Let J d denote the set of
strings over {1, . . . , m} of length d:

J d := {1, . . . , m}d,

40 MULTIACCESS, RESERVATIONS & QUEUES

and let J denote the set of strings of arbitrary length:

J :=
∞⋃

d=0

J d.

Each string in J can be interpreted in the obvious way as the address of a slot
in the complete tree, and the empty set, corresponding to d = 0, stands for
the root slot of the tree. We use z+ as the set of strings that is obtained from
z = 〈z1 . . . zd〉 ∈ J by appending one symbol from {1, . . . , m} to z:

z+ := {〈z1 . . . zd 1〉, . . . , 〈z1 . . . zd m〉},
and z+ is interpreted as the set of child slots of slot z. Similarly, we define z∗ as
the set of strings that is obtained from z by appending any element y ∈ J \ ∅,
and z∗ is interpreted as the set of descendants of z in the tree.

Using this notation, we define a tree description as a mapping N : J → N

which satisfies the following condition for each z ∈ J :

N(z) =
∑
y∈z+

N(y). (3.1)

Thus, N associates a number with each string, subject to a conservation prop-
erty. The number N(z) represents the number of messages that collided in the
slot associated with z. The conservation property states that each set of collid-
ing messages is partitioned into subsets. Note here that (3.1) is a condition on
N , as in Neininger and Rüschendorf [132], and not its definition.

Remark 3.1 The function N codes all the information in a contention tree,
so that it is a proper description. However, N is a redundant description as it is
defined on all of J . An actual contention tree differs from the complete m-ary
tree in that the branching terminates as soon as a slot contains a value equal
to 0 or 1. In the definition of N , the splitting continues forever. A minimal
description of the contention tree, is given by the set of terminating slots plus
the associated function values. Using these, we can reconstruct the value for
each slot in the contention tree by summing over the values associated with its
child slots, via (3.1).

These concepts are illustrated in Table 3.1 for the tree shown in Fig. 3.1. The
left column of Table 3.1 lists a number of strings in J which stand for the slots
in the tree. The right column lists the value of N for these strings. As noted in
Remark 3.1, not all the slots of the complete m-ary tree are actually part of the
contention tree. Referring to the tree shown in Fig. 3.1, we see that not all slots
at level 2 are relevant to the contention tree: As N(3) = 1, the slots 〈31〉, 〈32〉,
and 〈33〉 are not contained in the tree. Hence, Table 3.1 does not list the values

Basic Properties of Contention Trees 41

Table 3.1. All slots z ∈ J actually included in the contention tree displayed in Fig. 3.1, with
value N(z)

Slot Subgroup
address z size N(z)

〈1〉 5
〈2〉 2
〈3〉 1
〈11〉 2
〈12〉 3
〈13〉 0
〈21〉 1
〈22〉 1
〈23〉 0
〈111〉 0
〈112〉 1
〈113〉 1
〈121〉 2
〈122〉 1
〈123〉 0
〈1221〉 1
〈1222〉 0
〈1223〉 1

of N for all strings in J . Rather, it lists those that are relevant to the contention
tree from Fig. 3.1. Note in particular that N(∅) = 8 for this example. However,
we have not included ∅ and N(∅) in Table 3.1, as we do not consider the root
slot as part of the contention tree.

3.2.2 A Path Based Description

In Remark 3.1, we have observed that a contention tree can be reconstructed if
we retain the locations of the terminal slots plus the values of N for these slots.
In this section, we use this observation to give an alternative description of a
contention tree, which is based on these stopping times on the paths through
the complete tree.

We use X to denote the set of infinite strings over the alphabet {1, . . . , m}:

X = {1, . . . , m}∞,

and X codes the set of all infinite paths through the complete m-ary tree in the
obvious way. For x ∈ X , we use x(d) to denote the restriction of x to its first
d symbols, so that x(d) ∈ J d. By convention, x(0) = ∅.

The alternative description is specified via functions τ : X → N and ψ :
X → {0, 1}. Informally, τ(x) indicates the level at which the path x is stopped.
Hence, if τ(x) = d, then x(d) provides the address of a slot in the contention

42 MULTIACCESS, RESERVATIONS & QUEUES

Table 3.2. All paths x through a complete ternary contention tree, where ‘*’ is used as short-
hand for all possible strings with symbols 1, 2, and 3, and the values of the functions τ and ψ
for the contention tree shown in Fig. 3.1

Paths

x τ(x) ψ(x)

〈3*〉 1 1
〈13*〉 2 0
〈21*〉 2 1
〈22*〉 2 1
〈23*〉 2 0
〈111*〉 3 0
〈112*〉 3 1
〈113*〉 3 1
〈122*〉 3 1
〈123*〉 3 0
〈1221*〉 4 1
〈1222*〉 4 0
〈1223*〉 4 1

tree that contains either a successful transmission or that is empty. The success
indicator ψ(x) is 0-1 valued and equals 0 if the path was stopped by an empty
slot and equals 1 if the path was stopped by a successful transmission.

Formally, τ and ψ are obtained from N : For any x ∈ X define

τ(x) := inf (d ∈ N : N(x(d − 1)) > 1, N(x(d)) ≤ 1) , (3.2)

and
ψ(x) := N(x(τ(x))). (3.3)

Table 3.2 illustrates these concepts using the tree shown in Fig. 3.1. In
Table 3.2, we list all strings in X . Here, we have shortened this infinite list
by using the symbol ‘*’ for all possible strings of the symbols 1, 2, and 3. Next
to these paths we have listed the values of τ and ψ.

Remark 3.2 The descriptions via N and (τ, ψ) are equivalent in the sense
that they code the same contention tree, as is evident from Remark 3.1. Using
N , we make some arbitrary (and unimportant) choice of what happens in slots
of the complete tree that are descendants of slots with successful transmissions,
using τ and ψ such a choice is not needed.

In dealing with trees, we make extensive use of an ancestry relation, ∼, be-
tween elements of J . Given u ∈ J and v ∈ J , we use u∼v to denote the
situation that either u = v, u ∈ v∗, or v ∈ u∗. The case that neither of these

Basic Properties of Contention Trees 43

conditions holds, is indicated as u
∼v. In particular, we need to count the frac-
tion of paths in X that satisfy some specific ancestry relation. The following
lemma gives the relevant facts, where we use U to denote the uniform measure
on X , and 1 for the indicator function.

Lemma 3.1 For 1 ≤ d ≤ e we have∑
x∈X

∑
y∈X

1(x(d)∼y(e))U(x)U(y) =
me

md+e

and∑
x∈X

∑
y∈X

1(x(d)
∼y(e);x(d − 1)∼y(e − 1))U(x)U(y) =
me+1 − me

md+e
.

The proof of Lemma 3.1 is a simple counting argument, and not further
considered.

3.2.3 Distributions Under the Random Splitting Rule

Hitherto, we have used the models as descriptions, i.e. as a means to code a
given contention tree. However, with the splitting rule as indicated in the intro-
duction, a contention tree is a stochastic object. In particular, the description
{N(z), z ∈ J } is a collection of random variables. For an arbitrary integer n,
its distribution can be defined as follows:

N(∅) = n,

{N(y), y ∈ z+} d= Mult(N(z), 1/m, . . . , 1/m), (3.4)

where d= denotes equality in distribution and Mult denotes the multinomial
distribution with all probabilities equal to 1/m.

We will now use this recursive definition to give a non-recursive definition
of the marginal and bivariate distributions of the elements of {N(z), z ∈ J }.
This will be the first goal of the section, see Lemma 3.2. The distribution of
{N(z), z ∈ J } induces the distribution of {(τ(x), ψ(x)), x ∈ X} via the
definitions (3.2) and (3.3). We survey what we need of their joint distribution in
Lemmas 3.3 and 3.4. Proofs of the lemmas are given at the end of this chapter.
This section ends with a remark on a scaling behaviour of these distributions
that provides a rationale for the further developments.

First, we observe that the definition (3.4) leads to analytic expressions for
the marginal distribution of each N(z) and for the bivariate distributions of the
pairs N(u) and N(v):

Lemma 3.2 (a) If d ≥ 1 and z ∈ J d, then for 0 ≤ i ≤ n,

P(N(z) = i) =
(

n

i

)(
1

md

)i(
1 − 1

md

)n−i

. (3.5)

44 MULTIACCESS, RESERVATIONS & QUEUES

(b) If 1 ≤ d ≤ e, u ∈ J d and v ∈ J e with u∼v, then for 0 ≤ i ≤ j ≤ n,

P(N(u) = j,N(v) = i) (3.6)

=
(

n

i, j − i, n − j

)(
1

me

)i(1
md

− 1
me

)j−i(
1 − 1

md

)n−j

.

(c) If 1 ≤ d ≤ e, u ∈ J d and v ∈ J e with u
∼v, then for 0 ≤ i ≤ n and
0 ≤ j ≤ n with i + j ≤ n,

P(N(u) = i, N(v) = j) (3.7)

=
(

n
i, j, n − i − j

)(
1

md

)i(1
me

)j (
1 − 1

md
− 1

me

)n−i−j

.

The marginal distribution of N(z) stated in Lemma 3.2(a) can be derived via
a direct probabilistic argument: The n contenders are distributed uniformly and
independently of each other over the md slots at level d. Similar arguments can
be brought to bear on the bivariate distributions given in Lemma 3.2. The proof
at the end of this chapter, however, uses formal arguments based on induction.

Now from these basic probabilities we can deduce the marginal and bivariate
distributions related to τ . To this end, define for d ≥ 1,

q(d) := 1 −
(

1 − 1
md−1

)n

− n

md−1

(
1 − 1

md−1

)n−1

, (3.8)

and for d ≥ 1 and e ≥ 1,

n(d, e) := 1 −
(

1 − 1
md−1

)n

− n

md−1

(
1 − 1

md−1

)n−1

(3.9)

−
(

1 − 1
me−1

)n

− n

me−1

(
1 − 1

me−1

)n−1

+
(

1 − 1
md−1

− 1
me−1

)n

+n

(
1

md−1
+

1
me−1

)(
1 − 1

md−1
− 1

me−1

)n−1

+n(n − 1)
1

md−1

1
me−1

(
1 − 1

md−1
− 1

me−1

)n−2

.

Lemma 3.3 (a) If d ≥ 1 and x ∈ X ,

P(τ(x) ≥ d) = q(d). (3.10)

(b) If 1 ≤ d ≤ e, and x, y ∈ X with x(d − 1)∼y(e − 1),

P(τ(x) ≥ d, τ(y) ≥ e) = q(e). (3.11)

Basic Properties of Contention Trees 45

(c) If d ≥ 1 and e ≥ 1, and x, y ∈ X with x(d − 1)
∼y(e − 1),

P(τ(x) ≥ d, τ(y) ≥ e) = n(d, e). (3.12)

Again, as in Lemma 3.2, some of the distributions in Lemma 3.3 can be
obtained via a direct probabilistic argument. The distribution in (3.10) imme-
diately follows from the observation that a given slot at level d is in the actual
contention tree if the subgroup size associated with its predecessor, at level
d − 1, is at least 2. To establish (3.11), combine the previous argument with
the observation that in this case τ(y) ≥ e implies τ(x) ≥ d. The distribution
given in (3.12) requires a somewhat more elaborate argument, see [93]. At the
end of this chapter, we give proofs using induction.

We can also consider the marginal and bivariate distributions of the success
instants along a given path. To this end define I1(x, d) as the event that path
x ∈ X has a successful exit at level d:

I1(x, d) := {τ(x) = d, ψ(x) = 1}. (3.13)

Moreover, define for d ≥ 1,

q1(d) :=
n

md

((
1 − 1

md

)n−1

−
(

1 − 1
md−1

)n−1
)

, (3.14)

c0(d) :=
n(n − 1)

m2d

(
1 − 2

md

)n−2

, (3.15)

for 1 ≤ d < e,

c1(d, e) :=
n(n − 1)

md+e

((
1 − 1

md
− 1

me

)n−2

−
(

1 − 1
md

− 1
me−1

)n−2
)

,

and for d ≥ 1 and e ≥ 1,

n1(d, e) :=
n(n − 1)

me+d

((
1 − 1

md
− 1

me

)n−2

−
(

1 − 1
md−1

− 1
me

)n−2

−
(

1 − 1
md

− 1
me−1

)n−2

+
(

1 − 1
md−1

− 1
me−1

)n−2
)

.

Lemma 3.4 (a) If d ≥ 1 and x ∈ X ,

P(τ(x) = d, ψ(x) = 1) = q1(d). (3.16)

(b) If 1 ≤ d ≤ e, and x, y ∈ X with x(d)∼y(e),

P(I1(x, d), I1(y, e)) = q1(d)1(d = e). (3.17)

46 MULTIACCESS, RESERVATIONS & QUEUES

(c) If d ≥ 1, and x, y ∈ X with x(d)
∼y(d) and x(d − 1)∼y(d − 1),

P(I1(x, d), I1(y, d)) = c0(d). (3.18)

(d) If 1 ≤ d < e, and x, y ∈ X with x(d)
∼y(e) and x(d − 1)∼y(e − 1),

P(I1(x, d), I1(y, e)) = c1(d, e). (3.19)

(e) If 1 ≤ d, 1 ≤ e, and x, y ∈ X with x(d − 1)
∼y(e − 1),

P(I1(x, d), I1(y, e)) = n1(d, e). (3.20)

Remark 3.3 Recall that for n → ∞
lim

n→∞

(
1 − x

n

)n
= e−x, (3.21)

and consequently,

lim
k→∞

(
1 − 1

mk+δ

)ξmk

= e−ξm−δ
. (3.22)

Hence, with n = ξmk, ξ ∈ [1, m) and δ ≥ −k + 1, we find for q as defined in
(3.8) that

lim
k→∞

q(k + δ + 1) = 1 − e−ξm−δ − ξm−δe−ξm−δ
. (3.23)

Now consider
P(τ ≥ k + δ + 1) = q(k + δ + 1) (3.24)

for n = ξmk and k → ∞. From (3.23) it follows that, asymptotically, the
probability in (3.24) does not depend on k. Inspection of the bivariate proba-
bilities in Lemmas 3.3 and 3.4 reveals that these bivariate probabilities share
this asymptotic independence of k.

We can interpret this scale invariance heuristically: Increasing n by increas-
ing k shifts the level at which events occur. However, it does not change the
univariate and bivariate probabilities of these events in the sense that the event
I1(〈v1 . . . vd〉) for n = ξmk follows the same probability distribution as the
event I1(〈v1 . . . vdvd+1 . . . vd+l〉) for n = ξmk+l. However, there are many
more events of the latter type. Indeed, the contention tree with n = mk+l con-
sists of ml probabilistic copies of the contention tree with n = mk shifted
downward by l levels. Therefore, one can expect a strong law of large num-
bers to hold at levels k + l for l → ∞. This underlies much of the theory in
Sects. 3.3.1 and 3.3.2.

Basic Properties of Contention Trees 47

3.3 Tree Statistics

We give a brief account of the most extensively studied statistic of the tree:
Its length. Then we turn to the success instants in Sect. 3.3.2. Finally, in
Sect. 3.3.3, we consider tree statistics for trees in which a number of the initial
levels has been skipped.

3.3.1 Tree Length

The tree length equals the number of slots that are needed to resolve all con-
flicts in the tree. A simple calculation shows that the tree length T can be
expressed as

T =
∞∑
l=1

ml
∑
x∈X

1(τ(x) ≥ l)U(x). (3.25)

To verify (3.25), observe that a node at level l is shared by a fraction m−l of
all the paths in X .

Taking expectations, we obtain an expression for the expected tree length:

E(T) = E

⎛⎝ ∞∑
l=1

ml
∑
x∈X

1(τ(x) ≥ l)U(x)

⎞⎠ =
∞∑
l=1

mlq(l), (3.26)

where we have used (3.10), also see Kaplan and Gulko [93], (1). Now evaluat-
ing E(T)/n for n = ξmk, as motivated by Remark 3.3, we obtain

1
n

E(T) =
1

ξmk

∞∑
l=1

mlq(l)

= m

∞∑
l=1

1
ξ
m−k+l−1q(k + (−k + l − 1) + 1)

= m
∞∑

i=−k

1
ξ
miq(k + i + 1).

Using the asymptotic form of q(k + i + 1) given in (3.23), it is not difficult to
obtain the following expression for the expected tree length.

Theorem 3.1 (Adapted from [93], Theorem 1). For n = ξmk, with ξ ∈
[1, m),

lim
k→∞

1
n

E(T) = ma(ξ), (3.27)

where

a(ξ) =
∞∑

i=−∞
h

(
ξ

mi

)
, and h(u) =

1 − e−u

u
− e−u. (3.28)

48 MULTIACCESS, RESERVATIONS & QUEUES

Expression (3.27) provides a convenient starting point to analyse the prop-
erties of the expected tree length. In [86] it is shown that

E(T) ≈ m

(
n

log(m)
− 1

m − 1

)
(3.29)

is a good approximation to E(T) for n large. However, numerical computa-
tions readily reveal that a(ξ) is not constant over the range [1, m). From this
we deduce the remarkable fact, see e.g. [86, 93, 163], that E(T)/n does not
converge to a fixed value in the limit with n tending to ∞. Rather E(T)/n
exhibits a tiny oscillation around the leading term given in (3.29). In [86], this
oscillation is identified.

We now turn to the variance of the tree length. For this consider T 2:

T 2 =

⎛⎝ ∞∑
d=1

md
∑
x∈X

1(τ(x) ≥ d)U(x)

⎞⎠2

(3.30)

=
∞∑

d=1

m2d
∑
x∈X

∑
y∈X

1(τ(x) ≥ d, τ(y) ≥ d)U(x)U(y)

+2
∞∑

d=1

∞∑
e=d+1

mdme
∑
x∈X

∑
y∈X

1(τ(x) ≥ d, τ(y) ≥ e)U(x)U(y).

Splitting the sums in (3.30) gives

T 2 =
∞∑

d=1

m2d
∑

x,y∈X
x(d−1)∼y(d−1)

1(τ(x) ≥ d, τ(y) ≥ d)U(x, y)

+
∞∑

d=1

m2d
∑

x,y∈X
x(d−1)
∼y(d−1)

1(τ(x) ≥ d, τ(y) ≥ d)U(x, y)

+2
∞∑

d=1

∞∑
e=d+1

md+e
∑

x,y∈X
x(d−1)∼y(e−1)

1(τ(x) ≥ d, τ(y) ≥ e)U(x, y)

+2
∞∑

d=1

∞∑
e=d+1

md+e
∑

x,y∈X
x(d−1)
∼y(e−1)

1(τ(x) ≥ d, τ(y) ≥ e)U(x, y).

Here, we have used U(x, y) as shorthand for U(x)U(y). The expectations of
the indicator variables are given in Lemma 3.3. Moreover, the fraction of paths

Basic Properties of Contention Trees 49

such that x(d − 1)∼y(e − 1) or x(d − 1)
∼y(e − 1) is given in Lemma 3.1.
Consequently, the expected value of (3.30) equals

E(T 2) =
∞∑

d=1

[
q(d)md+1 + n(d, d)

(
m2d − md+1

)]
+2

∞∑
d=1

∞∑
e=d+1

[
q(e)me+1 + n(d, e)(md+e − me+1)

]
.

An expression for var(T) can be obtained by subtracting (ET)2 and splitting
the terms of E(T 2) as above. So we obtain

var(T) = E(T 2) − (ET)2 (3.31)

=
∞∑

d=1

[(
q(d) − q(d)2

)
md+1

+
(
n(d, d) − q(d)2

)
md+1(md−1 − 1)

]
+2

∞∑
d=1

∞∑
e=d+1

[q(e) − q(d)q(e)] me+1

+2
∞∑

d=1

∞∑
e=d+1

[n(d, e) − q(d)q(e)] (md+e − me+1).

Now proceeding as above for E(T), we can obtain an asymptotic expression
for var(T)/n. Thus, on setting n = ξmk, letting k tend to ∞, and using the
asymptotic form of the bivariate probabilities n(d, e) and q(d), it is not difficult
to obtain the following theorem.

Theorem 3.2 (See [93], Theorem 2). For n = ξmk, with ξ ∈ [1, m),

lim
k→∞

1
n

var(T) = m2b(ξ), (3.32)

where

b(ξ) =
∞∑

i=−∞

(
1 + ξm−i

)
e−ξm−i

h
(
ξm−i

)−(∞∑
i=−∞

ξm−ie−ξm−i

)2

+2
∞∑

i=−∞

(
1 + ξm−i

)
e−ξm−i

∑
j>i

h
(
ξm−j

)
and h is as in Theorem 3.1.

50 MULTIACCESS, RESERVATIONS & QUEUES

As b is bounded and non-constant over the range ξ ∈ [1, m), Theorem 3.2
shares some of the properties of Theorem 3.1. Firstly, we observe that var(T)
is of O(n) for n large. Secondly, var(T)/n does not converge to a fixed limit
for n tending to ∞. Rather, var(T) oscillates around its leading term. Again,
the oscillations are tiny. In [86] explicit formulas are given, both for the leading
term of var(T)/n and for the oscillations around this main value.

We can also define various other tree statistics of interest. For example, by
restricting the sum over l in (3.25) to the first d levels for the length of a tree,
we obtain an expression for Td, the number of slots in the contention tree up to
level d:

Td :=
d∑

l=1

ml
∑
x∈X

1(τ(x) ≥ l)U(x). (3.33)

We can give similar expressions for the number of exits S from the tree:

S :=
∞∑
l=1

ml
∑
x∈X

1(τ(x) = l, ψ(x) = 1)U(x), (3.34)

and for Sd, the number of exits from the contention tree up to level d:

Sd :=
d∑

l=1

ml
∑
x∈X

1(τ(x) = l, ψ(x) = 1)U(x). (3.35)

Clearly, we must have that S = n. Taking expectations in (3.34) and substitut-
ing the expression for q1(d), we find that E(S) = n. Moreover, a lengthy but
otherwise elementary computation, involving the same techniques that lead to
the computation of var(T), readily shows that var(S) = 0; see, e.g. the proof
of Theorem 3.4.

3.3.2 Success Instants

Denote the success instants, as introduced in Sect. 3.1, by ei, i = 1, . . . , n.
Thus ei is the time of the ith success in the contention tree, and this time
will clearly depend on the order in which the tree is traversed. The empirical
distribution of the exit times, F̂ is given by

F̂ (t) =
1
n

n∑
i=1

1(ei ≤ t). (3.36)

In this section, we will obtain approximations of F̂ for the breadth-first order-
ing of the slots of the contention tree.

To be more formal about the exit times we introduce an ordering, ≤, on the
elements in J , and ≤ orders first on the length of the string and then lexico-
graphically the strings with the same length. Use J+ to denote the set of all

Basic Properties of Contention Trees 51

strings of positive arbitrary length: J + := J \ ∅. For v ∈ J +, define v− = u
if v ∈ u+. Next, for given u ∈ J , let T (u) denote the cumulative number of
slots actually in the tree, and let S(u) denote the cumulative number of exits
from the tree, i.e.

T (u) :=
∑

v∈J +:v≤u

1(N(v−) > 1), (3.37)

and
S(u) :=

∑
v∈J +:v≤u

1(N(v−) > 1, N(v) = 1). (3.38)

Note that S(∅) = T (∅) = 0 by definition.
The variable T (u) can be interpreted as time, as it counts the number of

slots that are actually used in the contention tree. Hence, a graph of S(u) vs.
T (u), where u ranges over the elements in J in the appropriate order, defines a
stochastic process. This process starts at 0 at time 0, and increases to n during
the time needed to complete the tree. The process stops at time T , with T the
length of the tree defined in (3.25).

Clearly, we can define this process for both breadth-first and depth-first
ordering of the slots in the tree. These processes are illustrated in Fig. 3.4.

time

cu
m

ul
at

iv
e

nu
m

be
r

of
 e

xi
ts

time

cu
m

ul
at

iv
e

nu
m

be
r

of
 e

xi
ts

8

6

4

2

0

8

6

4

2

0

5 10 15 5 10 15

(a) (b)

Fig. 3.4. Exit process from tree presented in Fig. 3.1 (a) for breadth-first order (b) for depth-
first order

52 MULTIACCESS, RESERVATIONS & QUEUES

Figure 3.4a shows this process for the tree given in Fig. 3.1 with the breadth-
first order and Fig. 3.4b shows the process for the tree given in Fig. 3.1 with the
depth-first order. In the sequel, we limit ourselves to breadth-first trees.

This process also codes the empirical distribution, F̂ , of the success instants.
To see this, let t denote a time on the positive time axis; let u = T−1(t) denote
the node in J for which T (u) ≈ t, i.e.

T−1(t) =

{
inf(u ∈ J : T (u) = t�) if t ≤ T,

inf(u ∈ J : T (u) = T) if t > T,
(3.39)

then
F̂ (t) =

1
n

S(T−1(t)). (3.40)

It follows that the graph which interpolates the sequence of expected values of
T (u) and S(u): (E(T (u)), E(S(u))), provides a convenient approximation of
the empirical distribution of the success instants.

The next theorem provides expressions for this distribution. Define Sd as
the expected number of success instants up to level d, i.e. the expectation of
(3.35) and Td as the expected number of slots in the tree up to level d, i.e. the
expectation of (3.33):

Td :=
d∑

l=1

mlq(l), (3.41)

Sd :=
d∑

l=1

mlq1(l), (3.42)

with q as defined in (3.8) and q1 as defined in (3.14).

Theorem 3.3 With breadth-first order, the graph which interpolates the se-
quence (E(T (u)), E(S(u))), u ∈ J , is given by

Fb(t) :=
1
n

Sd−1 +
t − Td−1

Td − Td−1

1
n

(Sd − Sd−1), for t ∈ (Td−1, Td]. (3.43)

The proof of Theorem 3.3 is given in Sect. 3.4. The accuracy of the approx-
imation depends on the variability of both T (u) and S(u). The following the-
orem states that the variability of both T (u)/n and S(u)/n is asymptotically
negligible.

Theorem 3.4 For each u ∈ J , under breadth-first order,

lim
n→∞

1
n2

var(T (u)) = 0, (3.44)

lim
n→∞

1
n2

var(S(u)) = 0. (3.45)

Basic Properties of Contention Trees 53

Time

E
xi

ts

Time

E
xi

ts

0.0

0 50 100 150 200 250 0 500 1000 1500 2000 2500

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Fig. 3.5. Empirical cumulative distributions of success instants from 10 random contention
trees, light lines, and theoretical approximation, bold line, for breadth-first order and (a) n =
100 (b) n = 1,000

Again, a proof is deferred to Sect. 3.4. In addition, we conjecture that similar
theorems will hold for depth-first trees; see Sect. 3.5.

Theorem 3.4 shows that asymptotically, for n → ∞, the empirical distribu-
tion function of the success instants normalised by n converges to its expected
value. Theorems 3.3 and 3.4 are illustrated in Fig. 3.5. In Fig. 3.5, we have
displayed the empirical distribution functions of the success instants for 10
random contention trees with breadth-first order, and the theoretical approxi-
mation given in Theorem 3.3. We have done so in Fig. 3.5a for n = 100 and
in Fig. 3.5b for n = 1,000. We see that the theoretical approximation is quite
good for both cases, and that the difference between the empirical distributions
and theoretical distribution function becomes smaller for increasing n.

Theorems 3.3 and 3.4 do not imply, however, that the sequence of expected
values itself converges to any fixed function. Rather, the expected value of
the sequence of distribution functions will vary with ξ as n = ξmk tends to
infinity via k → ∞. This is similar to the phenomenon that was observed
for the expected tree length and the variance of the tree length considered in
Sect. 3.3.1. A precise statement is given in Theorem 3.5.

54 MULTIACCESS, RESERVATIONS & QUEUES

Theorem 3.5 Let X ∼ Fb, with Fb defined in (3.43). Then, for n = ξmk

with ξ ∈ [1, m),

lim
k→∞

P

(
X

ξmk
≤ t

)
= F ξ

b (t), (3.46)

where F ξ
b is defined for t ∈ (Tδ−1(ξ), Tδ(ξ)] as

F ξ
b (t) := e−ξm−δ

+
t − Tδ−1(ξ)

mh(ξm−δ+1)

(
e−ξm−δ−1 − e−ξm−δ

)
, (3.47)

with δ ∈ Z,

Tδ(ξ) = m
δ∑

i=−∞
h(ξm−i), (3.48)

and h as in (3.28).

The proof uses (3.23) in Remark 3.3 and the fact that

Sd

n
=
(

1 − 1
md

)n−1

, (3.49)

and is not further considered. Theorem 3.5 is illustrated in Fig. 3.6a,b. There,
we have displayed the asymptotic forms of the distribution functions for

Time

E
xi

ts

Time

E
xi

ts

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0 1 2 3 40.5 1.0 1.5 2.0 2.5

(a) (b)

Fig. 3.6. Asymptotic distribution (a) for m = 3 and ξ = 1 (solid line) and ξ = 2 (dotted line)
(b) for m = 10 and ξ = 1 (solid line) and ξ = 5 (dotted line)

Basic Properties of Contention Trees 55

various values of ξ. It can be observed that the distribution functions vary with
ξ. It can also be observed that the oscillations with m = 10 are much larger
than the oscillations with m = 3.

3.3.3 Skip Levels

From Fig. 3.5, we observe that the probability of success is very small during
the first slots of the tree. Thus, for a tree with 100 contenders, the frequency of
successes is very low during the first 50 slots of the tree, corresponding to the
first three levels of the tree. For a tree with 1,000 contenders, the frequency of
successes is very low up to level five.

These initial slots are essentially wasted. They only serve to split the initial
group into smaller subgroups. However, this can also be achieved by start-
ing the tree at a higher level. This hints at a method for optimising the tree by
skipping the initial levels of the tree in which no successes occur, and then pro-
ceeding as usual. This idea is illustrated in Figs. 3.7 and 3.8. The tree in Fig. 3.7
is a standard contention tree. Note that there are no success instants during the
first level of the tree. Skipping this level, as done in the tree in Fig. 3.8, thus
decreases the total number of slots needed to resolve all the conflicts and in-
creases the efficiency of the tree.

Fig. 3.7. Contention tree

Fig. 3.8. Same contention tree as in Fig. 3.7, now started at the 2nd level

56 MULTIACCESS, RESERVATIONS & QUEUES

Generally, of course, there is no way of knowing in advance that no success
instant will occur in a given level of the tree. However, by skipping initial levels
in which success instants are sufficiently unlikely a priori, we can achieve the
same effect and increase the efficiency of the tree. This has been explored in
e.g. Capetanakis [30] and Mathys and Flajolet [120].

We now make the use of skip level trees more precise. Use T
(s) for the

expected length of a tree that starts at level s. Adapting the approach from
Sect. 3.3.1, it is easily seen that the expression for the expected tree length now
becomes

T
(s) = ms +

∞∑
i=s+1

miq(i), (3.50)

rather than (3.26). Using similar techniques as in Sect. 3.3.1, we obtain that

lim
k→∞

1
n

T
(s) = lim

k→∞
ms−k

ξ
+ m

∞∑
i=s−k

h(ξm−i), (3.51)

where n = ξmk and where the dependence of n on k has been suppressed as
usual.

The optimal number of levels to skip can now be computed by minimising
(3.50) over s. We will not consider this optimisation in great detail. However,
from (3.51), it is clear that we should choose s = k+b for some constant b, and
with some experimentation, we can numerically optimise for b. It appears that
we should take b ≈ −1. Thus, we recover the well known fact that we should
start the tree with g∗ subgroups, where g∗ is chosen so that the expected number
of contenders in each subgroup is slightly greater than 1, see, e.g. Bertsekas
and Gallager [14], p. 291. Our approximation here is rather crude, as we have
restricted ourselves to initial subgroups of size g = ms.

Table 3.3 provides the optimal s for various values of n and m = 3. More-
over, it gives the average length of trees that start at this optimal level, and, for
comparison, the average length of trees that start at level 1. Apparently, we can
reduce the length of the contention tree by approximately 10%.

Table 3.3. Optimal starting level sopt, average length of usual contention tree, T
(1), and aver-

age length of contention tree that starts at level sopt, T
(sopt), for various values of n

n sopt T
(1)

T
(sopt)

50 2 132 123
100 3 271 241
1,000 5 2,729 2,426

Basic Properties of Contention Trees 57

3.4 Proofs

Proof of Lemma 3.2. (a) We proceed using induction. For d = 1, the statement
is obvious. Assuming that the statement is true up to level d − 1, for z =
〈z1 . . . zd〉,

P(N(z) = i) =
n∑

l=i

P(N(z) = i|N(z−) = l)P(N(z−) = l).

Next, use the definition of N(z)|N(z−) and the induction hypothesis to show
(3.5).

(b) Use P(N(u) = i, N(v) = j) = P(N(u) = i|N(v) = j)P(N(v) = j)
and (a).

(c) Statement (c) is clear if u1
= v1 so that u and v have no common
ancestor. Next, assume that u and v have a latest common ancestor w at level
f , i.e. wi = ui = vi, i = 1, . . . , f , and uf+1
= vf+1. In this case,

P(N(u) = i, N(v) = j)

=
n∑

l=i+j

P(N(u) = i, N(v) = j|N(w) = l)P(N(w) = l).

Now use (a) and (b) and evaluate the sum to obtain (3.7). �

Proof of Lemma 3.3. (a) Note that P(τ(x) ≥ d) = P(N(x(d − 1)) > 1), so
that (a) follows from Lemma 3.2(a).

(b) Note that

P(τ(x) ≥ d, τ(y) ≥ e) = P(N(x(d − 1)) > 1, N(y(e − 1)) > 1)
= P(N(y(e − 1)) > 1),

for x(d − 1)∼y(e − 1) with 1 ≤ d ≤ e. Hence, (b) follows from (a) in
Lemma 3.2.

(c) Note that

P(τ(x) ≥ d,τ(y) ≥ e)
= P(N(x(d − 1)) > 1, N(y(e − 1)) > 1)
= 1 − P(N(x(d − 1)) ≤ 1) − P(N(y(e − 1)) ≤ 1)

+ P(N(x(d − 1)) ≤ 1, N(y(e − 1)) ≤ 1),

and (c) follows from Lemma 3.2(a) and (c). �

Proof of Lemma 3.4. (a) Observe that

P(I1(x, d)) = P(τ(x) = d, ψ(x) = 1)
= P(N(x(d − 1)) > 1, N(x(d)) = 1),

58 MULTIACCESS, RESERVATIONS & QUEUES

so that the statement follows from Lemma 3.2(b):

P(I1(x, d)) =
n∑

i=2

(
n

1, i − 1, n − 1

)
1

md

(
m − 1
md

)i−1(
1 − 1

md−1

)n−i

=
n

md

n−1∑
i=1

(
n − 1

i

)(
m − 1
md

)i(
1 − 1

md−1

)n−1−i

=
n

md

((
1 − 1

md

)n−1

−
(

1 − 1
md−1

)n−1
)

.

(b) In this case

P(I1(x, d), I1(y, d))
= P(N(x(d − 1)) > 1, N(x(d)) = 1, N(y(e − 1)) > 1, N(y(e)) = 1).

However, as x(d)∼y(e) with 1 ≤ d ≤ e, it follows that x(d)∼y(e−1). Hence,
N(y(e − 1)) > 1 contradicts N(x(d)) = 1 unless d = e. In the latter case (a)
applies.

(c) Observe that x(d−1)∼y(d−1) implies that x(d−1) = y(d−1). Hence,
for x, y such that x(d − 1)∼y(d − 1) and x(d)
∼y(d), we have

P(I1(x, d), I1(y, d))

= P(N(x(d − 1)) > 1, N(y(d − 1)) > 1, N(x(d)) = 1, N(y(d)) = 1)

= P(N(x(d − 1)) > 1, N(x(d)) = 1, N(y(d)) = 1)

=
n∑

i=2

P(N(x(d))=1, N(y(d)) = 1|N(x(d − 1)) = i)P(N(x(d − 1)) = i).

Hence, on using Lemma 3.2(a) and (c), (3.18) follows.
(d) For x, y such that x(d − 1)∼y(e − 1) and x(d)
∼y(e), with 1 ≤ d < e,

we have

P(I1(x, d), I1(y, e)) =
∑

2≤i<j≤n

P(N(y(e)) = 1|N(y(e − 1)) = i)

× P(N(x(d − 1)) = j,N(y(e − 1)) = i,N(x(d)) = 1).

Moreover, observe that

c2(d, e) := P(N(x(d − 1)) = j, N(y(e − 1)) = i, N(x(d)) = 1)

Basic Properties of Contention Trees 59

reduces to

c2(d, e) = P(N(y(e − 1)) = i, N(x(d)) = 1|N(x(d − 1)) = j)
×P(N(x(d − 1)) = j)

=
(

j

1, i, j − i − 1

)(
1
m

)(
1

me−d

)i(
1 − 1

m
− 1

me−d

)j−i−1

×P(N(x(d − 1)) = j),

where we have used Lemma 3.2(c).
Now putting this together, we obtain that

P(I1(x, d), I1(y, e)) =
n∑

j=3

j−1∑
i=2

(
i

1

)(
1
m

)(
1 − 1

m

)i−1(j

1, i, j − i − 1

)

×
(

1
m

)(
1

me−d

)i(
1 − 1

m
− 1

me−d

)j−i−1

×
(

n

j

)(
1

md−1

)j (
1 − 1

md−1

)n−j

,

and the desired result (3.19) follows after some more elementary manipula-
tions.

(e) There is the elementary identity

f(a, b, c) :=
∑

i+j≤n

ij

(
n

i, j, n − i − j

)
aibjcn−i−j

= n(n − 1)ab(a + b + c)n−2.

Define

h(a, b, c) :=
∑

i+j≤n
i,j≥2

ij

(
n

i, j, n − i − j

)
aibjcn−i−j , (3.52)

and note that

h(a, b, c) = f(a, b, c) −
n−1∑
i=1

i

(
n

i, 1, n − i − 1

)
aibcn−i−1

−
n−1∑
j=1

j

(
n

1, j, n − 1 − j

)
ab jcn−1−j +

(
n

1, 1, n − 2

)
abcn−2

= n(n − 1)ab(a + b + c)n−2 + n(n − 1)abcn−2

−n(n − 1)ab(b + c)n−2 − n(n − 1)ab(a + c)n−2.

60 MULTIACCESS, RESERVATIONS & QUEUES

Observe that

P(I1(x, d), I1(y, e)) =
∑

i+j≤n
i,j≥2

P(N(x(d)) = 1|N(x(d − 1)) = i)

×P(N(y(e)) = 1|N(y(e − 1)) = j)
×P(N(x(d − 1)) = i, N(y(e − 1)) = j).

Here the univariate conditional probabilities are simple binomial probabilities,
and the bivariate probabilities are given in Lemma 3.2(c). Substitution yields

P(I1(x, d), I1(y, e)) =
1

(m − 1)2
∑

i+j≤n
i,j≥2

ij

(
n

i, j, n − i − j

)

×
(

m − 1
me

)i(m − 1
md

)j

×
(

1 − 1
md−1

− 1
me−1

)n−i−j

=
1

(m − 1)2
h

(
m − 1
me

,
m − 1
md

, 1− 1
md−1

− 1
me−1

)
,

with h as defined in (3.52). Equation (3.20) now immediately follows. �

Proof of Theorem 3.3. Consider u = 〈u1 . . . ud〉. From (3.37) we obtain that

E(T (u)) = E

⎛⎝ ∑
v∈J +:v≤u

1(N(v−) > 1)

⎞⎠
= E

⎛⎝ d∑
l=1

∑
v∈J l:v≤u

1(N(v−) > 1)

⎞⎠
=

d−1∑
l=1

ml
P(τ ≥ l) + E

⎛⎝ ∑
v∈J d:v≤u

1(N(v−) > 1)

⎞⎠
= Td−1 + nd(u)q(d), (3.53)

where nd(u) is the number of slots at level d that precede u:

nd(u) =
d∑

i=1

(ui − 1) nd−i + 1. (3.54)

Similarly, we can evaluate E(S(u)):

E(S(u)) = Sd−1 + nd(u)q1(d). (3.55)

Basic Properties of Contention Trees 61

Solving for nd(u) from (3.53) and inserting in (3.55), we obtain

E(S(u)) = Sd−1 +
E(T (u)) − Td−1

q(d)
q1(d)

= Sd−1 +
E(T (u)) − Td−1

mdq(d)
mdq1(d)

= Sd−1 +
E(T (u)) − Td−1

Td − Td−1
(Sd − Sd−1),

and (3.43) follows. �

Proof of (3.44) in Theorem 3.4 concerning var(T (u)). We consider T (u)
as defined in (3.37) and will evaluate var(T (u)). First observe that to prove
Theorem 3.4, we can restrict ourselves to u = 〈u1 . . . uk m〉. Next, we split
T (u):

T (u) =
∑

v∈J +:v≤u

1(N(v−) > 1) =
k+1∑
d=1

md
∑

x∈X :x(d)≤u

1(τ(x) ≥ d)U(x)

= Tk + mk+1
∑

x∈X :x(k+1)≤u

1(τ(x) ≥ k + 1)U(x).

Now by an argument entirely analogous to the one leading to the expression
for var(T) in (3.31), we find that

var(T (u)) = E(T (u)2) − (ET (u))2

=
k∑

d=1

((q(d) − q(d)2)md+1 + (n(d, d) − q(d)2)md+1(md−1−1))

+ 2
k−1∑
d=1

k∑
e=d+1

(q(e) − q(d)q(e))me+1

+ 2
k−1∑
d=1

k∑
e=d+1

(n(d, e) − q(d)q(e))(md+e − me+1) + r(u).

Here, r(u) is a remainder term, relative to Expression (3.31), due to the in-
clusion of incomplete rows in the tree expansion defined via T (u). To give
an expression for r(u), define f(u) for the fraction of paths x ∈ X such that
x(k + 1) ≤ u:

f(u) := nk+1(u)/mk+1, (3.56)

62 MULTIACCESS, RESERVATIONS & QUEUES

with nd(u) as defined in (3.54). With this notation, r(u) becomes
r(u) = f(u)2(q(k + 1) − q(k + 1)2)mk+2

+(n(k + 1, k + 1) − q(k + 1)2)mk+2(mk − 1)

+2f(u)
k∑

d=1

(q(k + 1) − q(d)q(k + 1))mk+2

+2f(u)
k∑

d=1

(n(d, k + 1) − q(d)q(k + 1))(md+k+1 − mk+2).

Hence, in parallel with Theorem 3.2, we see that var(T (u))/n is bounded
for any u, and (3.44) in Theorem 3.4 follows. �

Proof of (3.45) in Theorem 3.4 concerning var(S(u)). We first consider Sk as
defined in (3.35), and find an expression for var(Sk). Note that

S2
k =

k∑
d=1

k∑
e=1

md+e
∑

x,y∈X
1(I1(x, d), I1(y, d))U(x, y)

=
k∑

d=1

m2d
∑

x,y∈X
1(I1(x, d), I1(y, d))U(x, y)

+
k∑

d=1

k∑
e=1

md+e
∑

x,y∈X
1(I1(x, d), I1(y, e))U(x, y).

Now splitting this expression for S2
k into paths such that either x(d)∼y(e),

x(d)
∼y(e) and x(d−1)∼y(e−1), or finally x(d−1)
∼y(e−1), as suggested
by Lemma 3.4, and taking expectations, we get

E(S2
k) =

k∑
d=1

(
mdq1(d) + (md+1 − md)c0(d) + (m2d − md)n1(d, d)

)
+ 2

k∑
d=1

k∑
e=d+1

(
(me+1 − me)c1(d, e) + (md+e − me+1)n1(d, e)

)
.

We consider the sums over d and e and observe that the sum over e can be
solved. In particular we find that

t1(d) :=
k∑

e=d+1

(me+1 − me)c1(d, e)

= n(n − 1)
(

m − 1
md

)((
1 − 1

md
− 1

mk

)n−2

−
(

1 − 2
md

)n−2
)

,

Basic Properties of Contention Trees 63

and for the second term that

t2(d) :=
k∑

e=d+1

(md+e − me+1)n1(d, e)

= n(n − 1)
(
1 − m

md

)((
1 − m + 1

md

)n−2

−
(

1 − 2
md

)n−2

−
(

1 − 1
md−1

− 1
mk

)n−2

+
(

1 − 1
md

− 1
mk

)n−2
)

.

Hence,

E(S2
k) =

k∑
d=1

t(d),

where

t(d) = mdq1(d) + (md+1 − md)c0(d) + (m2d − md)n1(d, d)
+2t1(d) + 2t2(d).

Substitution of q1, c0, n1, t1, and t2 in t(d) and sorting the terms gives

t(d) = n

((
1 − 1

md

)n−1

−
(

1 − 1
md−1

)n−1
)

+n(n − 1)
(

1 − 1
md

− 1
mk

)n−2

2
(

1 − 1
md

)
+n(n − 1)

(
1 − 1

md−1
− 1

mk

)n−2

2
(
−1 +

m

md

)
+n(n − 1)

(
1 − 2

md

)n−2(
−1 +

1
md

)
+n(n − 1)

(
1 − 2

md−1

)n−2 (
1 − m

md

)
.

Finally, summing over d, we find

E(S2
k) = n

(
1 − 1

mk

)n−2

+ n(n − 1)
(

1 − 2
mk

)n−2(
1 − 1

mk

)
. (3.57)

Remark 3.4 Observe that by inserting k = ∞ we have recovered the el-
ementary fact that E(S)2 = n2, so that indeed var(S) = 0 as claimed in
Sect. 3.3.1.

Remark 3.5 The fact that the summation over d and e can be analytically
carried out in the evaluation of E(S2

k) should cause no surprise. Indeed, the

64 MULTIACCESS, RESERVATIONS & QUEUES

number of successes up to level k equals the number of entries with a value
equal to 1 at level k in the fully expanded complete m-ary tree, so that

Sk =
∑

u∈J k

1(N(u) = 1). (3.58)

Direct use of (3.58) rather than (3.35) leads to an alternative calculation of
var(Sk).

A similar simplification can be carried out for (ESk)2 and yields

(ESk)2 = n2

(
1 − 1

mk

)2(n−1)

, (3.59)

so that

var(Sk) =n

((
1 − 1

mk

)n−2

−
(

1 − 2
mk

)n−2(
1 − 1

mk

))

+ n2

((
1 − 2

mk

)n−2(
1 − 1

mk

)
−
(

1 − 1
mk

)2(n−1)
)

.

(3.60)

Now by an argument, entirely parallel to the previous one, we find that

var(S(u)) = var(Sk) + f(u)2[q1(k + 1)mk+1 + c0(k + 1)(mk+2 − mk+1)

+ n1(k + 1, k + 1)(m2(k+1) − mk+2) − q2
1(k + 1)m2(k+1)]

+ 2f(u)
k∑

d=1

(
c1(d, k + 1)(mk+2 − mk+1) (3.61)

+ n1(d, k + 1)(md+k+1 − mk+2) − q1(d)q1(k + 1)md+k+1
)

,

where, again, f(u) equals the fraction of paths x ∈ X such that x(k + 1) ≤ u
given in (3.56). We now simplify the sums over d in (3.61). From elementary
manipulations, it follows that

var(S(u)) = var(Sk)

+ f(u)2[q1(k + 1)mk+1 + c0(k + 1)(mk+2 − mk+1)

+ n1(k + 1, k + 1)(m2(k+1) − mk+2) − q2
1(k + 1)m2(k+1)]

+ 2f(u) (s1(k + 1) − s2(k + 1)) , (3.62)

Basic Properties of Contention Trees 65

where s1 is defined as

s1(k + 1) =
k∑

d=1

c1(d, k + 1)(mk+2 − mk+1)

+
k∑

d=1

n1(d, k + 1)(md+k+1 − mk+2)

= n(n − 1)
(

1 − 1
mk

)
×
((

1 − 1
mk

− 1
mk+1

)n−2

−
(

1 − 1
mk

)n−2
)

,

and s2 is defined as

s2(k + 1) =
k∑

d=1

q1(d)q1(k + 1)md+k+1

= n2

(
1 − 1

mk
− 1

mk+1
+

1
m2k+1

)n−1

−n2

(
1 − 2

mk
+

1
m2k

)n−1

.

We now turn to the claim (3.45) in Theorem 3.4. This follows from evaluat-
ing the limit for each of the three terms in (3.62). E.g. for var(Sk)/n2,

1
n2

var(Sk) ≤
(
(1 − 2

mk
)n−2(1 − 1

mk
) − (1 − 1

mk
)2(n−1)

)
+

1
n

. (3.63)

Given arbitrary ε > 0, there is an n∗ > 1/ε such that for all n ≥ n∗ and all
k ≥ 1, ∣∣∣(1 − 2

mk

)n−2 − e−2ξm−δ
∣∣∣ ≤ ε, (3.64)

and ∣∣∣(1 − 1
mk

)2(n−1) − e−2ξm−δ
∣∣∣ ≤ ε, (3.65)

where ξ and δ are defined via ν = logm(n)� as ξ = nm−ν and δ = k − ν.
Hence, for n ≥ n∗, (3.63) can be bounded as

1
n2

var(Sk) ≤ 3ε +
1

mk
e−2ξm−δ

= 3ε +
1
n

ξm−δe−2ξm−δ

≤ 4ε.

66 MULTIACCESS, RESERVATIONS & QUEUES

Thus indeed lim var(Sk)/n2 = 0 for all k in case that n → ∞. The verification
that the other terms in (3.62) also vanish in the limit requires the same type of
argument. �

3.5 Conclusion

In this chapter we have considered basic properties of contention trees. As
a new result, we have derived an expression for the marginal distribution of
the success instants when the tree is traversed in breadth-first order. This ex-
pression was shown to be asymptotically exact for an increasing number of
contenders.

Various lines for further research suggest themselves. Firstly, Denteneer and
Keane [54] derive expressions for the moments of this distribution in terms of
infinite sums. It is relevant to investigate whether these delay moments have
simple approximations, much as the expressions for the moments of the tree
length given in Theorems 3.1 and 3.2 can be approximated by elementary ex-
pressions given in Janssen and de Jong [86].

Secondly, it is relevant to generalise the results on the delay in the breadth-
first trees to delay in skip level trees and to delay in depth-first trees. In fact, in
[54], we have shown that Theorem 3.3 has a counterpart for depth-first trees:

Theorem 3.6 With depth-first order, E(T (u)) and E(S(u)) are given by

E(T (u)) =
d∑

l=1

ul − 1
ml

(T − Tl−1) +
d∑

l=1

q(l), (3.66)

E(S(u)) =
d∑

l=1

ul − 1
ml

(S − Sl−1) +
d∑

l=1

q1(l), (3.67)

for u = (u1, . . . , ud), where q is as defined in (3.8) and q1 in (3.14).

Figure 3.9 illustrates Theorem 3.6 and shows both empirical distribu-
tion functions obtained by simulation and the theoretical distribution defined
via (3.66) and (3.67). Figure 3.9 suggests that Theorem 3.4 also holds for
depth-first trees. Additionally, Fig. 3.9 suggests that Fd is asymptotically ap-
proximately linear. We conjecture that the distribution function for the success
instants in skip level trees, with optimally chosen number of levels to skip, is
also linear.

Thirdly, the results cited so far on the tree length have only considered mo-
ments. It is also relevant to investigate distributional issues, such as a central
limit theorem for the length.

A fourth line of relevant research pertains to the delay distribution for
contention trees in a dynamic environment in which new contenders arrive

Basic Properties of Contention Trees 67

Time

E
xi

ts

Time

E
xi

ts

0.0

0 50 100 150 200 250 300 0 500 1000 1500 2000 2500

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Fig. 3.9. Empirical cumulative distributions of success instants from 10 random contention
trees, light lines, and theoretical approximation, bold line, for depth-first order: (a) n = 100
(b) n = 1,000

during the resolution of the conflicts in the current contention tree. Generally,
the analysis of delay due to contention trees in such a dynamic environment
is quite difficult, certainly for closed networks. This is due to the complicated
nature of the distribution of the tree length, see e.g. Denteneer and Pronk [55].
The results from this chapter, however, point to some features of contention
trees that help to simplify the problem. Particularly, note that linearity of both
mean and variance of the length of contention trees naturally leads one to con-
sider queueing approximations to contention trees. The usefulness of this idea
is further corroborated by the linearity of the distribution of the success in-
stants in case of depth-first and skip level trees, or by the almost linearity of
this distribution for breadth-first trees. Such queueing approximations are the
subject of the next chapter.

Chapter 4

DELAY MODELS FOR CONTENTION TREES

IN CLOSED POPULATIONS

In this chapter we extend the study of stand-alone contention trees to more
practical settings. In such a setting, one must take into account that stations
alternate between activity periods and idle periods, and the splitting procedure
must be complemented with a channel access protocol to accommodate new-
comers. We describe the standard algorithms to do this, free access and blocked
access, and propose a novel mechanism: Scheduled blocked access.

Motivated by the results in Sect. 1.4.1 and Chap. 3, we consider closed
queueing models to approximate the delay due to contention resolution. More
specifically, we study a number of variants of the standard repairman model,
that differ in the service order at the repair facility. For each variant, we study
the sojourn time at the repair facility. Moreover, we show that our results can
be used to give excellent approximations to the request delay with contention
trees in a finite population for any of the channel access protocols.

4.1 Introduction

In this chapter, we describe and model contention trees in cable networks, for
which we must deal with the dynamics of the environment. These dynamics
arise from the fact that users will alternate between idle periods and activity
periods. During idle periods they have no need to access the shared resource, so
that they do not participate in the contention process. During activity periods,
however, a user wants to participate in the contention process in order to access
the resource. It remains to decide how to accommodate newcomers who have
just become active.

In this chapter, we consider three channel access protocols to do so. First, we
describe the standard access methods: Free access and blocked access. Next,
we introduce scheduled blocked access, which is a windowed access algorithm,

70 MULTIACCESS, RESERVATIONS & QUEUES

see Sect. 2.1. All access methods are combined with the basic tree algorithms.
The modified tree algorithm, see Sect. 2.1, is not considered.

A tractable model for the access delay due to contention trees when used in
such a dynamic setting is an essential step towards a better understanding of
the reservation procedure described in Sects. 1.2 and 1.3: Stations request data
slots in contention with other stations via contention trees. After a successful
request, data transfer follows in reserved slots, not in contention with other
stations.

The analysis of the contention tree in Chap. 3 has revealed a number of
properties:

The average length of the tree is approximately proportional to the initial
number of contenders, see Theorem 3.1.

The variance of the length of the tree is, again approximately, proportional
to the initial number of contenders in the tree, see Theorem 3.2.

The success instants in the tree are, to a first approximation, uniformly dis-
tributed over the total time it takes to complete the tree. This is true, for a
large number of contenders, for depth-first trees, see Fig. 3.9. For breadth-
first trees, this observation holds to a lesser extent, see Fig. 3.5, as the tree
has an initial phase in which no successes occur. It is only after this start-up
phase that success instants are uniformly spaced.

These observations show that the departure process from a tree resembles a
renewal process. Thus, they strongly motivate the use of queueing models to
approximate contention trees in a dynamic setting. In these approximations, we
view the shared channel as a central server that has to serve a stream of incom-
ing jobs: The requests. The rate at which these jobs are served can be derived
from the capacity of the contention tree, see Theorem 3.1 and (3.51) in Chap. 3.
As we are looking for tractable finite-population models, see Sect. 1.4.1, the re-
pairman model is a natural candidate model for the access delay in contention
resolution with contention trees. In this chapter, we propose and analyse vari-
ants of the repairman model to obtain the required approximations.

The repairman model, see, e.g. Takács [159], Chap. 5, is also known as the
computer terminal model or as the time sharing system. The basic model is
illustrated in Fig. 4.1. There are N machines working in parallel. After a work-
ing period, a machine breaks down and joins the repair queue. At the repair
facility, a single repairman repairs the machines according to some service dis-
cipline. Once repaired, a machine starts working again. We refer to Sect. 2.2
for a more extensive account of the repairman model.

In this chapter we show that the repairman model is an appropriate model for
contention trees in a dynamic setting. The machines in the model correspond to

Delay Models for Contention Trees in Closed Populations 71

Fig. 4.1. Repairman model

the stations, the working periods of the machines correspond to the idle periods
of the stations, and the time spent at the repair facility corresponds to the time
spent in contention resolution.

It turns out that the average time spent in contention resolution, obtained via
simulations, matches the average sojourn time at the repair facility in the basic
repairman model with the First Come First Served (FCFS) discipline almost
perfectly. However, the basic model fails to accurately predict the variance of
the time spent in contention resolution.

Closer inspection of contention trees reveals a possible source for this mis-
match. Contention trees operate by recursively splitting a group of stations into
subgroups. Splitting stops as soon as each subgroup contains at most one sta-
tion: A station is successful in transmitting its request as soon as it is the only
contender in a group. The split is performed so that each station in a given
group has the same probability of being successful, irrespective of the instant
at which it became ready to transmit the request. Thus, contention trees differ
from queues with a FCFS discipline. This suggests that variants of the basic
repairman model are needed with some randomness built into their service dis-
cipline. In this chapter, we consider three such variants.

The first model that we consider is the repairman model with the Random
Order of Service (ROS) discipline. This will serve as a model for the free ac-
cess protocol. Here, after a repair, the next machine to be repaired is chosen
randomly from the machines in the repair queue. We analyse the sojourn time
distribution at the repair queue for this model using a connection with the re-
pairman model considered in Mitra [126], in which the service discipline at the
repair facility is Processor Sharing (PS).

Secondly, to model the blocked access protocol, we introduce an extension
of the repairman model. In this extension, illustrated in Fig. 4.2, machines that
break down are first gathered in an ante room before they are put in random
order in the actual repair queue at the instants that the single server becomes
idle. In the sequel this service discipline will be called Gated Random Order

72 MULTIACCESS, RESERVATIONS & QUEUES

Fig. 4.2. Repairman model with gated random order of service

of Service (GROS). The emphasis of our analysis will be on obtaining an
approximate expression for the variance of the sojourn time at the repair facility.

Thirdly, we turn to scheduled blocked access: See Denteneer [46] and [166].
Following Denteneer [44], this is modelled by means of a machine repair
model, now with Gated Partial Random Order of Service (GPROS). This ser-
vice discipline is a hybrid form of the FCFS and the GROS service disciplines.
To explain GPROS in detail, we have to introduce the gate periods of the GROS
discipline, which are periods between two successive openings of the gate.
A gate period starts with the admission of a positive number of machines.
Under the GPROS discipline, this gate period is divided into g intervals of
equal length. At the start of a gate period, the arrivals during the previous gate
period are placed in the queue so that all arrivals in the ith interval are before
all arrivals in the intervals i + 1, . . . , g. However, the relative order in which
the arrivals within the ith interval are placed into the queue is random. This
procedure can be thought of as a compromise between FCFS, take g = ∞, and
GROS, take g = 1.

These different scheduling disciplines do not affect the mean sojourn time.
This is a direct consequence of Little’s formula and the fact that the number
of customers in the single-server queue is the same for any work-conserving
service discipline that does not pay attention to the actual service requests of
the customers. However, the randomness does impact the higher order statistics
and in particular the variance.

In our analysis of these models, we will therefore focus on approximations
to the second moment of the access delay, and so it is appropriate to comment
briefly on the relevance of the variance of the access delay in contention res-
olution. Firstly, low variability implies low jitter. As such, access variability
is a key performance measure in itself. A second reason for studying the vari-
ance of the access delay is that it determines the variance of the request size
in a reservation procedure, due to the request merging described in Sect. 1.3,
which will be more extensively covered in Sect. 4.2. Thus, the variance of the

Delay Models for Contention Trees in Closed Populations 73

access delay is needed in understanding the total average packet delay in cable
networks: Both the average request delay per packet and the average packet
transmission delay depend on the variance of the request size.

The rest of this chapter is organised as follows. In Sect. 4.2 we describe
the contention-resolution process using contention trees in more detail. Next,
in Sect. 4.3, we review some of the properties of the basic repairman model.
Moreover, we derive expressions for the first two moments of the steady-
state sojourn time distribution. The repairman model with ROS is considered
in Sect. 4.4. We first relate the model with ROS to the model with PS. Af-
ter that, we briefly review the main results from Mitra [126] for the model
with PS. In Sect. 4.5, we give an approximate derivation of the moments of
the sojourn time in the model with GROS and in Sect. 4.6, we do the same for
GPROS. In Sect. 4.7 we present numerical results which show that the models
of Sects. 4.4 – 4.6 can be used to approximate the request delay for contention
resolution in a reservation procedure with contention trees. Finally, Sect. 4.8
presents some conclusions.

4.2 Access via Contention Trees

The basic splitting mechanism of the contention tree was described in
Chap. 3. This algorithm must be complemented with a channel access pro-
tocol that specifies the procedure to be followed by stations that have data to
transmit and that are not already contending in the tree. There are two basic ac-
cess protocols: Free access and blocked access. In the former protocol, access
to the tree is free and any station can transmit a request in the next node of the
tree, as soon as it has data to transmit. In the latter protocol, the tree is blocked
so that new stations can only transmit requests in the root node of the tree that
is started as soon as the current tree has been completed.

The stations exhibit the following behaviour:

A station becomes active in the contention process when it generates a data
packet. In case of free access, it will then transmit a request in the next
tree node, randomly choosing one of the three slots in this node. In case of
blocked access, it will wait for the next new tree to be started and transmit
its request in one of the slots of the root node of this tree. The request
message includes a field called the request size, which indicates the number
of data packets for which transfer is requested.

The station stays active until its request has been successfully transmitted.

While active, the station can update the request size included in the request
message. Hence, packets that are generated at such an active station do not
cause extra requests.

74 MULTIACCESS, RESERVATIONS & QUEUES

After successful transmission of the request, the station quits the reservation
process, to become active again when it generates a new data packet.

Note that request merging implies that the number of stations that can be ac-
tive in contention is bounded. It is exactly this property that makes open models
less appropriate to describe contention resolution for a reservation procedure.
This property also explains the approach in this chapter, which approximates
the request delay in transmitting a request by means of the sojourn time in a
repairman model.

Next, observe that ROS serves as an approximation to the free access proto-
col: Neither in trees with free access nor in trees with ROS is there any advan-
tage for contenders that are active over newly arriving contenders.

The GROS discipline serves as an approximation to blocked access. Indeed,
both mechanisms have the concept of a batch. With GROS, it is the number
of stations that enter in one gate period, and with the blocked contention trees,
it is the group of stations that attempt to transmit in a new root node of the
tree. Moreover, stations in the same batch are served in random order for both
mechanisms.

4.2.1 Scheduled Blocked Access

We consider a variation on the blocked ternary tree with random splits. In this
variation, the initial group of stations is split into g subgroups rather than three.
Moreover, we assume that these initial subgroups are defined in terms of the
instants at which the stations became active. More formally, we assume that the
previous tree was executed in the time interval [t1, t2]. A station then chooses
subgroup i in the initial split if it became active in the interval [t1+(i−1)(t2−
t1)/g, t1 + i(t2 − t1)/g], where i ranges from 1 to g. Contention in each of
these g initial subgroups is then further organised according to a ternary tree
as considered above, in which the splits are based on randomisation.

Thus we obtain a contention tree which is a hybrid of a ternary contention
tree with random splits and a FCFS contention tree, see, e.g. Bertsekas and
Gallager [14], Sect. 4.3.2 for a description of the latter. Such a hybrid form
is appropriate in case the stations have a crude notion of time, which is suf-
ficient to carry out an initial split into subgroups, but which is insufficiently
accurate to carry out the full splitting.

Alternatively, this situation arises as an approximation to advanced tree
schedules considered in Denteneer [46]; also described in [74, 166]. There
are also similarities to windowed access algorithms considered in Mosely and
Humblett [127] and in Van den Broek [26]. In such a tree schedule, new trees
are started regularly and all stations that have data to transmit and that are not
yet contending in another tree, will be the participants in this new tree. Hence
there are multiple trees active at any instant. These trees are dealt with in a

Delay Models for Contention Trees in Closed Populations 75

FCFS manner, so that the contentions within the oldest tree are resolved first.
However, within a tree, the order in which individual stations are successful is
random and not related to the instants at which they became active.

Note that these scheduled blocked access trees improve upon the basic
blocked tree in two respects. Firstly, one can vary the degree of the initial level
of the tree with the traffic intensity. Thus one implements a skip level tree as
described in Sect. 3.3.3. Such trees have an advantage over the basic contention
tree in that fewer slots are required to complete the tree and this reduces aver-
age delay. Secondly, this mechanism introduces a negative correlation between
the waiting time before the start of the tree and the waiting time within the tree.
In this way, the variance of the total access delay is reduced as compared to the
standard blocked contention tree. The relevance of the variance of the access
delay was stressed in the introduction of this chapter.

In an actual implementation, one has to choose g, the initial number of sub-
groups into which the contenders are to be split. A suitable way is to choose g
so that the expected tree length is minimised. For the case of ternary trees, it
was argued in Sect. 3.3.3 that one may take

g ≈ 3log(n/3)�, (4.1)

where n is the initial number of contenders in the tree. Of course, in applica-
tions such as cable networks, n is not known in advance, so that one must em-
ploy a procedure to estimate n, see, e.g. Denteneer [46] or Yin and Lin [175].

The GPROS model serves as an approximation to scheduled blocked access.
Now, the stations that enter into slot i of the root node of the tree correspond to
the arrivals during the ith of the intervals that make up a complete gate period
of the GPROS model.

4.3 Properties of the Basic Model

First we introduce some notation and recall some properties of the basic re-
pairman model; cf. Fig. 4.1. The total number of machines in the system is
denoted by N . The machines work in parallel and break down, independently,
after an exponentially distributed working period with parameter λ. Machines
that break down join the repair queue, where they are served in a FCFS
manner by a single repairman. The repair times are exponentially distributed
with parameter μ. In Remark 4.1 we briefly comment on these distributional
assumptions.

With the random variables X and Y we denote the steady-state number
of machines that are working QW and that are in repair QR, respectively.
Clearly, the number of working machines and the number of machines in repair
evolve as Markov processes. Their steady-state distributions are given by, cf.
Kleinrock [99] or Kobayashi [101],

76 MULTIACCESS, RESERVATIONS & QUEUES

P(X = k) = P(Y = N − k) =
ρk/k!∑N
i=0 ρi/i!

, k = 0, . . . , N, (4.2)

where
ρ := μ/λ. (4.3)

For the mean and variance of X and Y we have

E(X) = ρ(1 − BN (ρ)), E(Y) = N − E(X), (4.4)
var(X) = var(Y) = E(X) − ρBN (ρ)[N − E(X)], (4.5)

where BN (ρ) denotes the Erlang loss probability, given by

BN (ρ) =
ρN/N !∑N
i=0 ρi/i!

. (4.6)

Indeed, it is well known that the number of operative machines has the same
distribution as the number of busy lines in the classical Erlang loss model.

We now turn to the moments of the sojourn time of an arbitrary machine at
the repair facility. To this end, we consider a time epoch at which an arbitrary
machine breaks down and moves to the repair queue. Stochastic quantities re-
lated to this instant are denoted by a subscript 1. Thus X1 is the number of
working machines at this instant, and Y1 is the number of machines in repair at
this instant. From the arrival theorem, see Sevcik and Mitrani [153], it follows
that the distributions of X1 and Y1 are given by (4.2), but with N replaced by
N − 1. We have for k = 0, . . . , N − 1

P(X1 = k) = P(Y1 = N − 1 − k) =
ρk/k!∑N−1
i=0 ρi/i!

. (4.7)

The sojourn time of an arbitrary machine at the repair facility equals its own
repair time plus the sum of the repair times of the machines already present at
the repair facility. Thus, denoting this sojourn time by S, we have that

S =
Y1+1∑
i=1

Bi, (4.8)

with Bi, i = 1, 2, . . . , a sequence of independent, exponentially distributed
random variables with parameter μ. Equation (4.8) enables us to obtain the
Laplace–Stieltjes transform (LST) of the sojourn time at the repair facility, see
also Kobayashi [101]:

E(e−ωS) =
N−1∑
j=0

ρN−1−j/(N − 1 − j)!∑N−1
i=0 ρi/i!

(
μ

μ + ω

)j+1

. (4.9)

Delay Models for Contention Trees in Closed Populations 77

Here, we are mainly interested in the first two moments of the sojourn time.
These can be obtained by consideration of the moments of the random sum
(4.8), i.e.,

E(S) = E(Y1 + 1)E(B1) =
1
μ

(
N − ρ(1 − BN−1(ρ))

)
, (4.10)

and

var(S) = E(Y1 + 1)var(B1) + var(Y1 + 1)E(B1)2

=
1
μ2

(
N − ρBN−1(ρ)[N − 1 − ρ(1 − BN−1(ρ))]

)
. (4.11)

Now, for N large and N � μ/λ, BN (ρ) goes to zero like ρN/N !, and the
following are extremely sharp approximations:

E(S) ≈ N

μ
− 1

λ
, (4.12)

var(S) ≈ N

μ2
. (4.13)

In Sects. 4.4 – 4.6 we study the sojourn time distribution at QR for the
ROS, GROS, and GPROS disciplines, respectively. As was briefly indicated
in Sect. 4.1, the mean sojourn time at QR is the same under FCFS, ROS,
GROS, and GPROS. Hence, we will concentrate on the variance of the so-
journ time. Formula (4.13) shows that for the FCFS discipline, asymptotically,
this variance is linear in the number of machines and does not depend on λ.

Remark 4.1 It is well known that the repairman model has an insensitiv-
ity property: The steady-state distribution of the number of machines in repair
only depends on the mean working time of machines and not on the actual
distribution of these working times. This implies that the results of this section
remain valid for arbitrarily distributed working times. Takács [159] has con-
sidered the situation with exponential working times, and general service time.
The assumption of exponential service times is not very appropriate for appli-
cation in the context of cable networks. However, we use the results for large N
and Nλ > μ, in which case the dependence on the distributional assumptions
is very weak.

Remark 4.2 It is instructive to consider the situation in which N tends to
infinity for fixed Λ := Nλ > μ. In this case, the considerations leading to
(4.12) and (4.13) apply to (4.4) and (4.5), so that

E(Y) ≈ N(1 − μ/Λ),
var(Y) ≈ Nμ/Λ.

78 MULTIACCESS, RESERVATIONS & QUEUES

In this case μ/Λ is between 0 and 1. This suggests that, in this limiting regime,
the variability in the number of machines in the repair queue is small as com-
pared to the actual number of machines in the repair queue. It can be seen
from (4.4) and (4.5) and the above, that in this case E(X) ≈ Nμ/Λ and
var(X) ≈ Nμ/Λ, and indeed it can be seen from (4.2) that X here is as-
ymptotically Poisson distributed.

4.4 ROS Discipline

Again we consider the model of Fig. 4.1, but now the service discipline at QR

is ROS. For reasons that will soon become clear, we assume that the system
contains N +1 rather than N machines. The main goals of this section are: (1)
to determine the LST of the waiting time distribution at QR, (2) to relate this
distribution to the sojourn time distribution at QR in case the service discipline
is PS instead of ROS, and (3) to determine the asymptotic behaviour of the
variance of the waiting (and sojourn) time at QR under the ROS discipline.

Consider a tagged machine, C, at the instant it arrives at QR. Let SROS

(WROS) denote the steady-state sojourn (waiting) time of C at QR. SROS is
the sum of WROS and a service time that is independent of WROS , and hence
we can concentrate on WROS . We denote by Y

(N+1)
1 the number of machines

in QR, as seen by C upon arrival at QR. Introduce for j = 0, . . . , N − 1,

φj(ω) := E(e−ωWROS |Y (N+1)
1 = j + 1), Re(ω) ≥ 0,

where Re(ω) denotes the real part of ω. We can write, for Re(ω) ≥ 0,

E(e−ωWROS |WROS > 0) =
N−1∑
j=0

P(Y (N+1)
1 = j + 1|Y (N+1)

1 > 0)φj(ω).

(4.14)

For the N unknown functions φ0(ω), . . . , φN−1(ω), the following set of N
equations holds:

φj(ω) =
μ + (N − j − 1)λ

μ + (N − j − 1)λ + ω

[
(N − j − 1)λ

μ + (N − j − 1)λ
φj+1(ω)

+
μ

μ + (N − j − 1)λ

(
1

j + 1
+

j

j + 1
φj−1(ω)

)]
. (4.15)

Notice that the pre-factors of φ−1(ω) and φN (ω) equal zero. Formula (4.15)
can be understood in the following way. The pre-factor

μ + (N − j − 1)λ
μ + (N − j − 1)λ + ω

Delay Models for Contention Trees in Closed Populations 79

is the LST of the time until the first event: Either an arrival at QR or a departure
from QR. An arrival occurs first with probability

(N − j − 1)λ
μ + (N − j − 1)λ

.

In case of an arrival, the memoryless property of the exponential working and
repair times implies that the tagged machine C sees the system as if it only
now arrives at QR, meeting j + 2 other machines there. A departure occurs
first with probability

μ

μ + (N − j − 1)λ
.

In case of a departure, C is with probability 1/(j +1) the one to leave the ante
room and enter the service position; if it does not leave, it sees QR as if it only
now arrives, meeting j other machines there.

We can use (4.15) to obtain numerical values of E(WROS |WROS > 0)
and var(WROS |WROS > 0), see Table 4.1. Formula (4.15) can also be used
to study this mean and variance asymptotically, for N → ∞. In fact, for this
purpose we can also use the analysis given by Mitra [126] for a strongly related
model: The machine-repair model with PS at QR and with N (instead of N +
1) machines. Denote the LST of the sojourn time distribution of a machine
meeting j machines at QR, in the case of PS, by ψj(ω). A careful study of
Formula (4.15) reveals that exactly the same set of equations holds for ψj(ω),
if in the PS case there are not N + 1 but N machines in the system. If C meets
j machines at the PS node QR, then it leaves N − j − 1 machines behind at
QW . Now observe that the time until either an arrival at or a departure from QR

occurs is exponentially distributed with parameter μ + (N − j − 1)λ, leading
to the same pre-factor as in (4.15). If an event occurs, it is a departure from QR

with probability μ/(μ + (N − j − 1)λ). If a departure from QR occurs, C is
with probability 1/(j +1) the machine to leave. If it does not leave, it sees QR

as if it only now arrives, meeting j − 1 machines there. Not only do we have

φj(ω) = ψj(ω), j = 0, . . . , N − 1,

but it also follows from (4.7) that

P(Y (N+1)
1 = j + 1|Y (N+1)

1 > 0) = P(Y (N)
1 = j), j = 0, . . . , N − 1.

The above equalities, combined with (4.14), imply that WROS , conditionally
upon being positive, in the machine-repair system with N + 1 machines, has
the same distribution as the sojourn time under PS in the corresponding system
with N machines. Adding a superscript (N) for the case of a machine-repair
system with N machines, we can write

P(S(N)
PS > t) = P(W (N+1)

ROS > t|W (N+1)
ROS > 0). (4.16)

80 MULTIACCESS, RESERVATIONS & QUEUES

This equivalence result between ROS and PS may be viewed as a special
case of a more general result in Borst et al. [21], see Cohen [37] for another
special case. In the G/M/1 queue, the sojourn time under PS is equal in dis-
tribution to the waiting time under ROS of a customer arriving to a non-empty
system [21]. This equivalence is extended in [21] to a class of closed product-
form networks (notice that the two-queue network in the present chapter indeed
is a closed product-form network). In particular, it follows from [21] that

P(S(N)
PS > t) = P(W (N+1)

ROS > t|W (N+1)
ROS > 0)

=
P(W (N+1)

ROS > t)

P(W (N+1)
ROS > 0)

, t ≥ 0, (4.17)

with

P(W (N+1)
ROS > 0) =

∑N−1
i=0 ρi/i!∑N
i=0 ρi/i!

. (4.18)

It is easily verified that, for the repairman model with N machines,

E(SROS) = E(SPS) = E(SFCFS),

just as indicated in Sect. 4.1, the latter quantity equaling E(Y1+1)/μ, cf. (4.10).
For example, the first equality follows after some calculation from the follow-
ing relation, that is obtained from (4.17) by integration over t:

E(S(N)
PS) =

E(W (N+1)
ROS)

P(W (N+1)
ROS > 0)

. (4.19)

Multiplication by t and integration over t in (4.17) similarly yields

var(S(N)
PS) =

var(W (N+1)
ROS)

P(W (N+1)
ROS > 0)

. (4.20)

If N is large and N > μ/λ, then P(W (N+1)
ROS = 0) is negligibly small. The

previous formula hence implies that, for N → ∞,

var(S(N)
PS) ∼ var(W (N)

ROS) and var(S(N)
PS) ∼ var(S(N)

ROS).

For an asymptotic analysis of EW
(N)
ROS and var(W (N)

ROS) we can thus immedi-
ately apply corresponding asymptotics of Mitra [126] for the PS-variant. Mitra
[126] derives a similar set of equations, in matrix form, as (4.15), albeit for
P(SPS > t|Y1 = j) rather than for its LST. He shows that the corresponding

Delay Models for Contention Trees in Closed Populations 81

matrix has N real and negative eigenvalues μN ≤ μN−1 ≤ · · · ≤ μ1. Using
the equivalent of (4.14) for PS, he finally shows that

P (SPS > u) =
N∑

i=1

αieμiu, u ≥ 0, (4.21)

with αi > 0 for i = 1, . . . , N and
∑N

i=1 αi = 1. Hence,

P(SPS > u) ≤ eμ1u, (4.22)

P(SPS > u) ∼ α1eμ1u, u → ∞. (4.23)

The fact that SPS is hyper-exponentially distributed immediately implies that,
see Proposition 12 in [126],

var(SPS) ≥ E(SPS)2. (4.24)

Hence var(SPS) = O(N2) for N → ∞, which sharply contrasts with the
O(N) behaviour for FCFS, see (4.13).

In Table 4.1, we consider μ = 0.5, 1 and 2, giving rise to ρ = 1
2N , ρ = N

and ρ = 2N , respectively. The next three remarks relate to these three different
cases.

Remark 4.3 Interestingly, in case ρ = μ/λ � N , the standard devia-
tion σROS of the sojourn time for ROS is almost identical to ES= ESROS .
This can be observed from the entry corresponding to μ = 0.5 in Table 4.1.
This suggests that for the considered parameter values, SROS is approximately
exponentially distributed. Indeed, the following reasoning shows that SROS is
approximately exponentially distributed when N is large and μ < Nλ. In this
case, the number of customers Y at the repair facility varies relatively little over
time, see, e.g. Remark 4.2, so that Y will be relatively close to its average value:
N(1 − μ/Λ), where Λ := Nλ. Ignoring the variability in Y , SROS is the sum
of a random number, L, of exp(μ) distributed service times, where L is geo-
metrically distributed with parameter 1/((1 − μ/Λ)N) (the tagged customer
has a chance 1/j to be the next one served, if there are j − 1 other customers

Table 4.1. Mean ESROS and standard deviation σROS of the sojourn times in the ROS model,
for number of stations N , service rate μ, and total traffic intensity Λ = N λ = 1

N = 100 N = 200 N = 1,000
μ ESROS σROS ESROS σROS ESROS σROS

0.5 100 99 200 199 1,000 999
1.0 8.2 10.4 11.5 15.2 25.2 34.7
2.0 0.97 1.10 0.99 1.13 1.00 1.15

82 MULTIACCESS, RESERVATIONS & QUEUES

present). It is well known that the sum of a geometrically distributed number of
independent, exponentially distributed random variables is again exponentially
distributed, so that both mean and standard deviation of SROS can be approx-
imated by (1 − μ/Λ)N/μ. In reality, Y will vary, so that this argument does
not strictly apply: L is still geometrically distributed, but its parameter is a ran-
dom variable rather than a constant equal to 1/(1−μ/Λ)N . Still, the entries in
Table 4.1 with μ = 0.5 show that the numerical predictions from this argument
are excellent. In this case 1 − μ/Λ = 0.5, and both mean and standard devi-
ation as numerically computed virtually coincide with the prediction 0.5N/μ.
In fact, the numerical entries suggest that σROS = ESROS − 1. This can be
made plausible by a more detailed version of the foregoing argument: By the
arrival theorem the number of stations in the queue at the instants of departures
is, on average, (N −1)(1−μ/Λ). Hence, the randomisation, which dominates
the variance term, involves only (N − 1)(1−μ/Λ) stations, on average, rather
than N(1 − μ/Λ).

Remark 4.4 Let us briefly consider the other extreme case: μ/Nλ � 1. It is
easily seen, and well known, that now P(X = N) ≈ 1. The repair facility now
behaves like an open M/M/1 queue with arrival rate Λ = Nλ and service
rate μ. Hence, ES = ESROS ≈ 1

μ−Λ . In the standard M/M/1 queue with
FCFS, the sojourn time is exponentially distributed, so σFCFS = ES. In the
M/M/1 queue with ROS, it follows from Cohen [35], p. 443, that the standard
deviation of the sojourn time is inflated with a factor f as compared to the
standard deviation of the standard M/M/1 queue with FCFS, where

f =
(
1 +

2(Λ/μ)2

2 − Λ/μ

) 1
2
.

The entries in Table 4.1 with μ = 2 are relevant to this case. We find that
f = 1.15, revealing a rather close agreement although μ

Nλ only equals 2. Fur-
thermore, note that f → 1 for μ

Nλ � 1, which again yields a coefficient of
variation of SROS that approaches 1.

Remark 4.5 We finally consider the intermediate case ρ = N − c
√

N as
N → ∞. This case has already been studied by Vaulot [168], see also Whitt
[171], for the Erlang loss model with N servers and offered traffic ρ, a model
that is equivalent with the repairman model. Vaulot proved that

√
NBN (ρ) =

√
NBN (N − c

√
N) ∼ φ(c)

Φ(c)
, c ∈ R, N → ∞, (4.25)

with
φ(c) =

1√
2π

e−c2/2 and Φ(c) =
1√
2π

∫ c

−∞
e−x2/2dx

Delay Models for Contention Trees in Closed Populations 83

the standard normal density and standard normal distribution function, respec-
tively. Substitution of (4.25) into (4.4) yields, for c = 0, the approximations

E(X) ≈ N −
√

2N

π
and E(Y) ≈

√
2N

π
, (4.26)

and hence, using Little’s formula EY = ΛRES, with ΛR = λEX the input
rate into the repair facility:

E(S) ≈ 1
Λ

√
2N

π
. (4.27)

The entries in Table 4.1 with μ = 1 (ρ = N , c = 0) are relevant for this case.

4.5 GROS Discipline

In this section, we consider the model with the GROS discipline, as illustrated
in Fig. 4.2 and described in Sect. 4.1. Again, we let Y denote the number of
machines in the total waiting area (i.e. ante room plus waiting queue). Obvi-
ously, the distribution of Y equals that of the number of machines in the repair
queue in the standard model described in Sect. 4.3, and is given by (4.2).

We will now consider SGROS : the sojourn time until repair of an arbitrary
(tagged) machine for the model with GROS. Observe that this sojourn time
consists of two components:

SGROS =
Y11∑
i=1

B1i +
Y21∑
i=1

B2i. (4.28)

Here, the random variables B1i and B2i are independent, exponentially dis-
tributed service times with parameter μ. The random variable Y11 denotes the
number of machines in the waiting queue (including the one in repair) at the
instant that the tagged machine breaks down. The random variable Y21 equals
the random position allocated to the tagged machine in the waiting queue at
the instant it is moved from the ante room to the waiting queue.

This model is not a product-form network, so that an exact analysis of the
sojourn time is considerably more difficult than the analysis for the models
considered earlier. Still, a numerical analysis is possible. We first have to find
the probability that the tagged machine finds k machines in the ante room and
n machines in the waiting queue at the instant it breaks down, where 0 ≤
k + n ≤ N − 1. Furthermore, a set of equations similar to (4.15) has to be
solved, now for the functions φk,n(ω), representing the LST of the sojourn time
of a machine, given that it finds k machines in the ante room and n machines
in the waiting queue at the instant that it breaks down.

84 MULTIACCESS, RESERVATIONS & QUEUES

A particularly simple evaluation of the first moments can be obtained, if one
makes the following two approximating assumptions:

The two components of SGROS in (4.28) are uncorrelated.

The random variables Y11 and Y21 are uniformly distributed on
{1, 2, . . . , Y1}, with the random variable Y1 as defined in Sect. 4.3.

In case Nλ > μ and N is large, they appear to be good approximations. This
can be motivated via Remarks 4.2 and 4.3: The two assumptions would be
valid if there were a fixed fraction of the machines in the repair queue. This is
not true, but the remarks suggest that this is a reasonable approximation as the
variability in the number of machines in the repair queue is relatively small.

Under these assumptions, it is now straightforward to show that

E(Y11) ≈ 1
2

E(1 + Y1) =
1
2
(N − μ/λ),

and

E(Y 2
11) ≈ 1

3
E(Y 2

1) +
1
2

E(Y1)

≈ 1
3
(
(N − 1 − μ/λ)2 + μ/λ

)
+

1
2

(N − 1 − μ/λ) .

For the variance we find that

var(Y11) ≈ 1
12

(N − μ/λ)2 − 1
6
N +

1
2
μ/λ.

Using these approximations, we can now evaluate the moments of the sojourn
time. The expected value is as in (4.10), and for the variance we obtain

var(SGROS) ≈ 2 var
(Y11∑

i=1

B1i

)
=

2
μ2

(E(Y11) + var(Y11))

≈ 1
μ2

(
(N − μ/λ)2

6
+

2N

3

)
. (4.29)

Now the variance of the sojourn time is of intermediate magnitude for large N .
It is much larger than in the FCFS case, but much smaller than in the ROS case.

4.6 GPROS Discipline

The sojourn time until repair of an arbitrary job for the model with GPROS,
denoted by SGPROS , allows for a heuristic approximation that is similar to the
one given for GROS. For this, observe that this sojourn time consists of three
components:

SGPROS =
Z11∑
i=1

B1i +
G−1∑
j=1

Zj∑
i=1

Aij +
Z21∑
i=1

B2i. (4.30)

Delay Models for Contention Trees in Closed Populations 85

Here, the random variables B1i, B2i and Aij are independent, exponentially
distributed service times with parameter μ. The random variable Z11 repre-
sents the, remaining, number of machines of the batch currently in the repair
queue (including the one in service) at the instant that the tagged machine
breaks down. The random variable Z21 represents the random service po-
sition of the tagged machine within its batch. Finally, the random variables
Zj , j = 1, . . . , G − 1, denote the sizes of the batches that are served between
the batch in service at the instant of the arrival of the tagged machine and the
batch to which the tagged machine belongs.

We now make even stronger approximating assumptions than in the previous
section:

The random variable G always takes the value g.

The three components of SGPROS in (4.30) are uncorrelated.

The random variables Z11 and Z21 are uniformly distributed on 1, . . . ,
Y1/g, where the random variable Y1 is as defined in Sect. 4.3.

The random variables Zj , j = 1, . . . , g−1, are distributed as Y1/g, suitably
rounded.

Again, neither of these assumptions is strictly valid. However, for Nλ > μ,
N large, and g small, they are reasonable as the variability of the number of
machines in the repair queue is relatively small, see Remarks 4.2 and 4.3 and
the discussion following the approximating assumptions for the GROS model.

As in Sect. 4.5, it immediately follows that

E(Z11) ≈ 1
2

1
g

E(1 + Y1) =
1
2

1
g
(N − μ/λ),

and

E(Z2
11) ≈ 1

g2

1
3

E(Y 2
1) +

1
2

1
g

E(Y1)

≈ 1
3

1
g2

(
(N − 1 − μ/λ)2 + μ/λ

)
+

1
2

1
g

(N − 1 − μ/λ) .

For the variance we find that

var(Z11) ≈ 1
12

1
g2

(N − μ/λ)2 − 2
3

1
g2

N +
1
g2

μ/λ +
1
2

1
g
(N − μ/λ).

For the moments of the Zj we obtain

E(Z1) ≈ 1
g

E(Y1) =
1
g
(N − 1 − μ/λ)

86 MULTIACCESS, RESERVATIONS & QUEUES

and
E(Z2

1) ≈ 1
g2

E(Y 2
1) ≈ 1

g2

(
(N − 1 − μ/λ)2 + μ/λ

)
.

For the variance we find
var(Z1) ≈ μ

λg2
.

Using these approximations, we can now approximate the moments of the so-
journ time.

The expectation of the sojourn time is as before and given in (4.10). To
approximate the variance, we first use the assumption that G can be replaced
by g:

var(SGPROS) ≈ var
(Z11∑

i=1

B1i +
g−1∑
j=1

Zj∑
i=1

Aij +
Z21∑
i=1

B2i

)

= 2var
(Z11∑

i=1

B1i

)
+ (g − 1)var

(Z1∑
i=1

Ai1

)
=

2
μ2

(E(Z11) + var(Z11)) +
g − 1
μ2

(E(Z1) + var(Z1)) .

(4.31)

One can now substitute the expressions for the moments of Z1 and Z11 to ob-
tain an explicit expression.

Inspecting the expression for var(SGPROS), we see that the variance is char-
acterised by two regimes. Firstly, for g fixed and N → ∞, the quadratic term
in var(Z11) dominates, so that

var(SGPROS) ≈ 2
μ2

var(Z11)

≈ 1
6g2μ2

(N − μ/λ)2.

In this case, the GPROS discipline approximately reduces the variance of the
sojourn time by a factor g2 as compared to GROS. Secondly, assume that g =
c(N − μ/λ) for some constant c > 0, as suggested by the results on skipping
levels in Sect. 3.3.3. Then we find that

var(SGPROS) ≈ g − 1
μ2

E(Z1) ≈ g − 1
gμ2

(N − μ/λ) ≈ (N − μ/λ) /μ2

for N → ∞. Hence, in this case, the variance of the sojourn time is approxi-
mately equal to the variance of the sojourn time for FCFS.

Delay Models for Contention Trees in Closed Populations 87

4.7 Numerical Results

We now turn to a comparison of the access delay due to contention resolution
and the sojourn time in the variants of the repairman model. In this compari-
son, we will confine ourselves to the first two moments of the various random
variables. We consider first moments in Sect. 4.7.1 and standard deviations in
Sect. 4.7.2.

The procedures for contention resolution were described in Sect. 4.2, and the
involved access delay is the delay experienced by stations that use contention
trees for reservation. More formally, it is defined as the number of tree slots
elapsed from the instant a station becomes active until the instant its request
is successfully transmitted. As already indicated, there are no closed-form ex-
pressions for the moments of the access delay, and so the results are obtained
by simulation. In these simulations, the stations execute one of the procedures
outlined in Sect. 4.2: They become active after an exponentially distributed in-
active period with parameter λ. Then they enter the contention resolution at the
earliest possible instant, as defined by the channel access protocol. Thus, we
use a source model in which each of the N stations generates packets according
to a Poisson process with rate λ, independently of the other stations.

The average delays obtained are denoted ÊSF and ÊSB , for the ‘free’ and
‘blocked’ channel access protocol, respectively. Likewise, the estimated stan-
dard deviations are denoted by σ̂F and σ̂B . The ‘hat’ serves as a reminder that
the moments are obtained from simulation. The figures for the blocked trees
are obtained by simulating 5,000 trees at the indicated settings. For the free
trees, the channel was simulated for 500,000 tree nodes. The figures presented
are sample averages after an initialisation period of 10%. By analysing the data
as five separate batches, we obtained an indication of the standard deviation of
the estimated figures. This analysis shows that all presented estimates have a
standard deviation of less than 1% of the estimate itself, which is sufficient for
our purposes.

The moments of the sojourn time of the various repairman models have
been obtained in Sects. 4.3–4.6. In utilising the results from these sections, we
will use μ = log(3) for the service rate. The motivation behind this value is
in Theorem 3.1 from Chap. 3 which gives the average length of a contention
tree with n contenders. Janssen and de Jong [86], (26)–(27), show that the
average length is well approximated by n/ log(3). Hence, the rate at which the
contenders are served can be approximated by log(3).

When approximating skipped level trees by means of the repairman model
with GPROS, we no longer have such a simple approximation for the service
rate. In this case, the arguments in Sect. 3.3.3 suggest that we may proceed
as follows. Firstly, we obtain a crude approximation to the rate using (3.51)
in Chap. 3:

88 MULTIACCESS, RESERVATIONS & QUEUES

μ(opt) = m

(
m

∞∑
l=−1

h(ξm−l) +
1

mξ

)−1

. (4.32)

Compared to (3.51), we have substituted s = k − 1 as motivated by the dis-
cussion below (3.51), and have multiplied by m to account for the fact that
there are m minislots in one slot. Secondly, we evaluate (4.32) for ξ = 2 and
m = 3, to obtain μ(opt) ≈ 1.2. Thirdly, we compute the expected number of
contenders in each contention tree, EY , according to Remark 4.2. Finally, we
compute the optimal number of levels to skip as

s(opt) =
⌊3

log (EY)
⌋
. (4.33)

Note that the initial number of subgroups equals g = ms+1 if the first s
levels are skipped.

4.7.1 First Moments

The average access delays for the tree models and the expected sojourn time
for the repairman model are given in Table 4.2. There is only one entry in
the table corresponding to the expected sojourn time, as it is the same for all
variants of the repairman model considered. In the table, we have varied the
number of stations, N , and the total traffic intensity Λ := Nλ. The primary
purpose of this table is to compare average access delay with expected sojourn
time. The intensities are chosen so that Λ is well above μ, which corresponds
to the setting for which the finite-population approximations are valid.

We can draw various conclusions. Firstly, and most importantly, we observe
that the expected sojourn time in the repairman model provides an excellent ap-
proximation to the average access delay for reservation with contention trees.
The agreement with blocked access is almost perfect; the agreement with the
results for free access is somewhat less. The former result is closely related to
a result in Denteneer and Pronk [55] on the average number of contenders in a
contention tree.

Table 4.2. Average request delay with free trees, ÊSF , and with blocked trees, ÊSB , both
obtained via simulation, and expected sojourn time for the repairman model, ES, for number of
stations N , and total traffic intensity Λ

N = 100 N = 200 N = 1,000

Λ ÊSF ÊSB ES ÊSF ÊSB ES ÊSF ÊSB ES

2.5 42.9 50.1 51.0 85.6 100.9 102.0 430.2 509.2 510.0
5.0 62.9 70.4 71.0 125.7 141.3 142.0 628.6 710.3 710.0
10.0 72.7 80.5 81.0 145.6 161.4 162.0 729.2 809.7 810.0
16.5 76.7 84.5 84.9 153.4 169.4 169.9 769.2 849.2 850.0

Delay Models for Contention Trees in Closed Populations 89

Table 4.3. Average request delay for skip level trees, ÊSS , with g initial slots, and expected
sojourn time for the repairman model, ES̃ := ESGPROS , with the GPROS discipline, for
number of stations N , and total traffic intensity Λ

N = 100 N = 200 N = 1,000

Λ g ÊSS ES̃ g ÊSS ES̃ g ÊSS ES̃

2.5 27 42.6 43.3 81 81.5 86.7 729 447 433
5.0 27 65.5 63.3 81 124.8 126.7 729 609 633
10.0 81 70.6 73.3 81 147.2 146.7 729 707 733
16.5 81 74.1 77.3 81 155.5 154.5 729 746 772

Secondly, we see that free access is more efficient than blocked access in
that the former has a smaller average access delay. This result parallels the
result for the open model and the Poisson source model, as graphically illus-
trated in Fig. 16 of Mathys and Flajolet [120]. The considered variants of the
repairman model all lead to the same expected sojourn time and are apparently
not sufficiently detailed to capture the differences between the first moments
of the blocked and the free access protocols. The difference arises as free and
blocked trees have a different efficiency, see Sect. 2.1. Indeed, the entries from
Table 4.2 suggest that free trees are approximately 10% more efficient than
blocked trees, in agreement with Table 2.1. Finally, we observe that all quan-
tities displayed in Table 4.2 approximately exhibit a linear dependence on the
number of stations (for the cases with N � μ/λ).

We now consider the approximation to the sojourn time in scheduled
contention trees using the repairman model with the GPROS discipline. Some
values for the expected sojourn time are given in Table 4.3. In all, the approxi-
mations are useful.

4.7.2 Standard Deviations

We next turn to a numerical comparison of the standard deviations in the
various models. These are given in Table 4.4, again for various values of N
and Λ.

Several conclusions can be drawn. Firstly, we observe that the standard de-
viation in either tree model changes with the traffic intensity and grows ap-
proximately linearly with the number of stations. Neither of these properties is
captured by the basic repairman model. In this basic model, the standard devi-
ation of the sojourn time is independent of the traffic intensity and grows only
as the square root of the number of stations.

Secondly, the standard deviation of the access delay in the blocked tree model
agrees well with the corresponding figure for the GROS repairman model.
The difference between the two standard deviations is approximately 15%.

90 MULTIACCESS, RESERVATIONS & QUEUES

Table 4.4. Standard deviations of the request delay with free trees, σ̂F , with blocked tree, σ̂B ,
and standard deviations for the basic repairman model, σ, the ROS repairman model, σROS ,
and the GROS repairman model, σGROS , for number of stations N , and total traffic intensity Λ

Tree Repair

N Λ σ̂F σ̂B σ σROS σGROS

100 2.5 46.3 19.3 9.1 50.45 22.1
100 5.0 67.9 26.5 9.1 70.18 29.9
100 10.0 78.5 30.1 9.1 80.13 33.9
100 16.5 82.8 31.4 9.1 84.06 35.5

200 2.5 92.5 37.5 12.9 101.46 43.0
200 5.0 136.0 52.5 12.9 141.20 58.9
200 10.0 157.4 59.9 12.9 161.15 67.0
200 16.5 165.4 62.4 12.9 169.02 70.1

1,000 2.5 464.3 184.9 28.8 509.64 209.6
1,000 5.0 677.9 260.9 28.8 709.39 290.9
1,000 10.0 789.8 298.4 28.8 809.34 331.6
1,000 16.5 834.6 310.6 28.8 848.73 347.7

The results for the GROS model capture both the dependence on the traffic
intensity and the dependence on the number of machines that is observed in
the tree simulations. Similarly, the standard deviation of the access delay in the
free tree model matches the corresponding figure for the repairman model with
the ROS service discipline quite well.

Looking more closely at the results, we see that the standard deviations
obtained for the GROS repairman model are always larger than those ob-
tained in the blocked tree simulations. Here, a fundamental limitation of
the repairman model as an approximation shows up. The batch nature of
the contention trees implies that it takes some initial time before the first
successful request is transmitted. Theorem 3.3 states that, after this ini-
tial period, successful transmissions occur fairly uniformly over the length
of the trees. Thus, the variability of the waiting period is somewhat reduced
as compared to the proposed model in which the successful transmissions oc-
cur uniformly over the full length of the tree. This also suggests that there is
an even more appropriate extension of the basic repairman model, i.e. one in
which the transfer from the ante room to the queue takes some time and in
which the server operates at a slightly higher speed. Alternatively, the current
approach is more appropriate for skip level trees as described in Sect. 3.3.3.

Thirdly, the standard deviations for the free access protocol far exceed those
for the blocked access protocol. This result has no counterpart in the open
model. In fact, Fig. 17 in Mathys and Flajolet [120] shows that the standard
deviation of the delay for free access protocol is below the corresponding
value with blocked access for most traffic intensities. However, for large traffic

Delay Models for Contention Trees in Closed Populations 91

Table 4.5. Standard deviation of request delay for skip level trees, σ̂S , with g initial slots, and
standard deviation of the sojourn time for the GPROS repairman model, σGPROS , for number
of stations N , and total traffic intensity Λ

N = 100 N = 200 N = 1,000

Λ g σ̂S σGPROS g σ̂S σGPROS g σ̂S σGPROS

2.5 27 7.1 6.0 81 9.4 8.5 729 18.2 19.0
5.0 27 6.4 7.3 81 8.9 10.3 729 20.5 23.0
10.0 81 6.2 7.8 81 8.9 11.1 729 20.3 24.8
16.5 81 6.3 8.0 81 8.5 11.4 729 19.2 25.4

intensities just below the stability bound the order reverses, and blocked access
then results in smaller standard deviations. Of course, our simulations are car-
ried out at a totally different set of traffic intensities, that exceed the stability
bound for the open system.

Moreover, the approximations exceed the values for the standard deviations
obtained in simulation. This observation parallels a similar finding for the first
moments when dealing with free trees, see Table 4.2. The correspondence be-
tween the approximations and the values obtained in simulation can be further
improved by taking into account that the free trees operate at a slightly higher
rate than the blocked trees. One possibility is to insert the rate of free trees,
obtained from Table 2.1, in the expressions for the standard deviations.

We now consider the approximation to the sojourn time in scheduled con-
tention trees using the repairman model with the GPROS discipline. Some val-
ues are given in Table 4.5. The approximation of the standard deviation of the
sojourn time, considered as a function of N , is rather good. The approxima-
tion, considered as a function of Λ, however, leaves room for improvement:
The approximations are linearly increasing in Λ, whereas the values obtained
by simulation are relatively insensitive to Λ.

4.8 Conclusion

In this chapter, we started from the assumption that the sojourn time in the re-
pair facility of the repairman model is related to the access delay experienced
when using contention trees to transmit requests. To substantiate this premise,
we obtained expressions for the moments of this sojourn time and compared
these to the corresponding moments of the access delay obtained through sim-
ulation. These numerical experiments showed that the expected sojourn time
in the repair stage shows a perfect match with the average access delay for both
variants of the tree procedure. It was also shown that the variances of the ac-
cess delay for the various tree protocols are well approximated by the variances
of the sojourn times of the appropriate repairman model: ROS for free access,
GROS for blocked access, and GPROS for scheduled blocked access.

92 MULTIACCESS, RESERVATIONS & QUEUES

In the introduction of this chapter it was pointed out that the variance of
the access delay in the first stage is needed in understanding the average total
packet delay in the two stages of a reservation procedure. The analysis of the
total delay will be carried out in Chap. 11. Moreover, the analysis of the mod-
els with the GROS and GPROS disciplines was heuristic in nature. Further
research is needed to make these approximations more precise. We take a first
step in this direction in Chap. 5.

An interesting topic not considered in this book, is to investigate the extent
to which the repairman model can be used to model other random access algo-
rithms, in which a finite-population effect is expected to be important. We refer
to Winands et al. [174] for such a study in case of ALOHA with exponential
back-off, used in the context of wireless in-home networks.

A final comment pertains to scheduled access, described in Sect. 4.2.1, and
introduced specifically to decrease the request variability. However, this can
alternatively be achieved by allowing access only for those stations that have
at least a certain minimum number of packets to transmit. The comparison of
this method with the scheduled access is another topic for further research.

Chapter 5

THE REPAIRMAN MODEL WITH GROS

The repairman model is used in Chap. 4 to approximate the request delay in a
reservation procedure. In particular, the sojourn time in the repairman model
with the Gated Random Order of Service (GROS) discipline is suggested as an
approximation for the request delay, when blocked contention trees are used
in a dynamic environment. Section 4.5 gives a heuristic approximation to the
variance of the sojourn time under GROS. That approximation would be valid
under overload conditions when the number of stations is large.

In this chapter, we undertake a more detailed analysis of the queue-size
processes in this closed queueing system with the GROS discipline via fluid
approximations. We use a continuous-mapping approach to carry out the as-
ymptotic analysis. Additionally, we use the fluid approximation to the queue-
size processes to study the empirical measure defined by the sojourn times of
the jobs that enter between two gate openings. Our analysis shows that this
empirical measure converges to the convolution of two uniform distributions,
which confirms the heuristic approximation from the previous chapter.

5.1 Introduction

The repairman model with the Gated Random Order of Service (GROS) disci-
pline was introduced in Chap. 4. The system is depicted in Fig. 4.2, and its op-
eration can be described as follows. The waiting area consists of an ante room
and a queue with a gate in between. Arriving jobs are placed in this ante
room before the queue. As soon as the single server becomes idle, the gate
opens and all jobs in the ante room are placed in the queue. The gate then
closes, and the jobs in the queue are served in random order. If there are no
such jobs, i.e. if the ante room is empty, the gate remains open until the first
arrival. This job is immediately transferred to the queue, and the gate closes.

94 MULTIACCESS, RESERVATIONS & QUEUES

In Chap. 4, it was shown that the sojourn time in the repairman model with
the GROS discipline constitutes an appropriate approximation to the request
delay, when using blocked contention trees in a dynamic environment. More-
over, in (4.29) of Chap. 4 a heuristically motivated approximation to the vari-
ance of this sojourn time is given. This approximation would be valid under
overload conditions when the number of stations is large.

In this chapter, we undertake a more detailed analysis of the queue-size
processes in this closed queueing system with the GROS discipline via fluid
approximations. The analysis exploits the similarity of the queueing system
with the GROS discipline and the same closed queueing system with the FCFS
discipline. In particular, it is readily verified that the arrival process to the wait-
ing area associated with the single server and the departure process from the
single server are stochastically the same for either service discipline. Moreover,
fluid approximations for these arrival and departure processes for the system
with the FCFS discipline have been well investigated, see, e.g. Iglehart and
Whitt [82] and Krichagina and Puhalskii [103].

The following is then a natural approach to analyse the queue-size
processes. Firstly, define a map that transforms the arrival and departure
processes into the queue-size processes, and investigate the continuity of this
map. Secondly, consider the limits of the arrival and departure processes under
fluid scaling. This latter limit can be obtained from the references cited, or,
under more restrictive conditions, from general theory given in Mandelbaum
et al. [117]. Thirdly, obtain the scaling limits of the relevant queue-size
processes by combining the scaling limits in the base system with the prop-
erties of the map. In this approach, we have followed Whitt [172], Chap. 3. In
the conclusion, we comment on an extension of this approach which addition-
ally uses the directional derivative of the map and the diffusion limits of the
arrival and departure processes, see [172], Internet Supplement Chap. 9. Fur-
ther examples of this approach can be found in, e.g. Mandelbaum and Massey
[116] and Mandelbaum and Pats [118].

Next, we show that the fluid approximation to the queue-size processes
can be used to approximate the sojourn times of the machines in repair.
More in particular do we study the empirical measure defined by the sojourn
times of the jobs that enter between two gate openings. Here, our analysis
shows that this empirical measure converges to the convolution of two uniform
distributions.

In Sect. 5.2, we first give a precise description of the model under consider-
ation. Then, in Sect. 5.3, we review the approach and the main results and give
an outline of the rest of this chapter.

The Repairman Model with GROS 95

5.2 Model Description

We consider a closed queueing system with N jobs, two service stations, and
an ante room in between, as illustrated in Fig. 4.2. The first station is an infi-
nite server queue and the second station is a single server queue. Jobs move
cyclically through the three nodes in the system as follows: After having been
served at the infinite server queue, a job moves to the ante room, where it waits
behind a gate in front of the single server queue. At the instant the single server
becomes idle, the gate opens and all jobs in the ante room are placed in the sin-
gle server queue. If there is no job waiting in the ante room, the gate remains
open until a first job arrives. This job is immediately taken into service at the
single server. The gate then closes. Jobs that are moved from the ante room are
placed in the single server queue in random order, and are served in this order.

This system is similar to the system considered in Krichagina and Puhalskii
[103] except for the gate and the ante room. We now give a precise description
of the system, following [103]. This description defines a sequence of models
indexed by N , the number of jobs in the system. In the scaling analysis to
follow, we will let N tend to infinity, and the investigation will be relevant to
large systems.

Assume that there are initially N0 jobs in the ante room, that there are no
jobs in the single server queue, so that there are N − N0 jobs in the infinite
server queue. Next, assume there is a complete probability space (Ω,F , P) and
independent i.i.d. sequences {ηi, i ≥ 1}, {η̃i, i = 1, . . . , N −N0}, {ξi, i ≥ 1},
and {ui, i ≥ 1} of nonnegative random variables defined on (Ω,F , P). The
random variables {η̃i, i = 1, . . . , N − N0} denote the residual service times
of the jobs initially present in the infinite server queue. The random variables
{ηi, i ≥ 1} represent the consecutive service times associated with jobs en-
tering the queue at the infinite server and have a common distribution with
cumulative distribution function F (x). We assume that E(η1) = 1/λ.

The variables {ξi, i ≥ 1} denote the consecutive service requirements of
the jobs served at the single server. We assume that E(ξ1) = 1 and that
var(ξ1) < ∞. At this single server, the jobs are served with rate Nμ. Note
that this involves a scaling of the rate at which the single server operates. We
do so as N tends to infinity in the proposed scaling limits. This will result in an
arrival intensity at the single server queue of rate proportional to N . In order
to obtain relevant limits, this arrival intensity must be balanced by a similar
increase of the rate at which the single server operates.

The sequence of random variables {ui, i ≥ 1} is independent of the other
sequences and consists of independent random variables, each uniformly dis-
tributed on [0, 1]. They will be used to model the randomness in the service
discipline.

We use V N (t) to denote the number of jobs being served by the infinite
server at time t. Moreover, we use WN (t) for the number of jobs in the ante

96 MULTIACCESS, RESERVATIONS & QUEUES

room at time t. The number of jobs at the single server at time t is denoted
by QN (t), and this number includes both the job in service and the jobs in the
queue in front of this single server. Finally, let Y N (t) = WN (t) + QN (t) be
the number of jobs that are either in the ante room or at the single server, so
that V N (t) = N − Y N (t).

The queue-size processes V N (·), Y N (·), WN (·), and QN (·) can be de-
scribed in terms of the primitive random variables as follows. Let S(·) =
{S(t), t ≥ 0} denote the renewal process generated by the sequence {ξi}:

S(t) = max(k : ξ1 + · · · + ξk ≤ t). (5.1)

Let DN (·) denote the departure process from the single server queue, i.e.
DN (t) is the number of jobs that have been served by the single server
by time t:

DN (t) = S

(
Nμ

∫ t

0
1(V N (s) < N)ds

)
. (5.2)

The departure process for the single server queue is also the arrival process at
the infinite server queue. Hence, if {αN

i , i ≥ 1} is the sequence of arrival times
of jobs at the infinite server, then

αN
i = inf(t ≥ 0 : DN (t) ≥ i). (5.3)

For each t ≥ 0, the arrival process, AN (·), at the ante room is given by

AN (t) =
DN (t)∑
i=1

1(αN
i + ηi ≤ t) +

N−N0∑
j=1

1(η̃j ≤ t). (5.4)

Clearly, AN (·) is also the departure process from the infinite server queue, i.e.
AN (t) is equal to the number of jobs that have completed service at the infinite
server by time t. Using AN (·), we can define the arrival time at the ante room
of the jth job to leave the infinite server:

σN
j = inf(t ≥ 0 : AN (t) ≥ j). (5.5)

The total number of jobs in the ante room and the single server queue equals

Y N (t) = N0 + AN (t) − DN (t). (5.6)

Note that the definition of this system of equations is circular as DN (·) de-
pends on V N (·) and V N (·) depends, via Y N (·), on DN (·). However, it is easy
to see that there is exactly one solution to this system of equations, as we can
distinguish between busy periods of the single server and idle periods. During
busy periods V N (t) < N , so that the circularity of the definition vanishes. The
idle periods are easily seen to be uniquely defined.

The Repairman Model with GROS 97

Remark 5.1 The model definition so far has closely followed [103], where
a gate-less system is considered. Apart from the gate, there are some further
changes, as compared to [103]. Firstly, we have not assumed that the infinite
server queue is initially empty. Secondly, we assume that the rate of the single
server is fixed and equal to Nμ, whereas in [103] the rate depends on the size
of the queue in front of the single server.

We now proceed to introduce additional notation, due to the introduction
of the ante room and the gate. These are the instants of the gate openings,
τN
j , j = 0, 1, 2, . . ., and the number of jobs, Nj , j = 0, 1, 2, . . ., present in the

ante room immediately before the instants of these gate openings. First, define
τN
0 = 0 and assume that N0 > 0 is known. Next, define

τN
1 = max

(
αN

N0
, σN

1

)
, (5.7)

and for j = 1, 2, . . .

τN
j+1 = max

(
αN

N0+AN (τN
j)

, σN

AN (τN
j)+1

)
, (5.8)

and
Nj = AN (τN

j) − AN (τN
j−1). (5.9)

By construction, we have Nj ≥ 1, for all j. The group of jobs that arrive during
one gate period will be called a batch, and Nj is the batch size.

Using these definitions, we can express the number of jobs in the ante room
at time t as follows:

WN (t) = AN (t) − max
τN
i ≤t

AN (τN
i), (5.10)

and the number of jobs at the single server

QN (t) = Y N (t) − WN (t) (5.11)

= N0 + max
τN
i ≤t

AN (τN
i) − DN (t).

Next, we turn to sojourn times. For this, we must model the randomisation
procedure that characterises GROS. This is done as follows. On its arrival at
the ante room, a job is assigned the next value from the sequence {ui, i ≥ 1}.
Thus the last job to arrive at the ante room before time t is the AN (t)th arrival
to the ante room and is assigned the value

u
AN (t). (5.12)

98 MULTIACCESS, RESERVATIONS & QUEUES

These values are used to determine the order in which the jobs are served in the
single server queue. More specifically, let i1 and i2 denote the arrival location
of two jobs, i.e. the first job is the i1th arrival to the ante room and the second
job is the i2th arrival to the ante room. Assume that both jobs arrive at the ante
room during the same cycle, j, say, so that

j−1∑
l=1

Nl + 1 ≤ i1 < i2 ≤
j∑

l=1

Nl. (5.13)

Then the job associated with the i1th arrival is served before the job associated
with the i2th arrival if ui1 ≤ ui2 . Conversely, the job associated with i2 is
served first if ui1 > ui2 . It is clear that this mechanism induces the right order
at the single server queue.

5.2.1 Notation and Conventions

We now introduce some notation that is used throughout the chapter. We use
D for the space of functions from [0,∞) to R

k that are right-continuous and
have left-hand limits, and D will be endowed with the product Skohorod J1-
topology. We use subscript symbols to indicate subspaces of D: Du denotes
the subset of functions in D that are unbounded above, D↑ denotes the subset
of functions in D that are non-decreasing, and D↑↑ stands for the subset of
functions in D that are strictly increasing. We use C to denote the subspace of
D of continuous functions and similar subscript symbols are used to denote the
subsets of C. These are all Borel measurable subspaces of D. The subspaces
of D are endowed with the restrictions of the J1-topology. For the spaces of
continuous functions, this restriction coincides with the uniform topology.

The superscript T is used to indicate the restriction to a function space with
compact domain, so that DT denotes the space of functions from [0, T] to R

k

that are right-continuous and have left-hand limits.
Convergence with respect to the J1-topology will be denoted by J1→:

xε J1→ x

for ε → 0. Consider the metric

dT
J1

(x, y) = inf
ν∈HT

(||x ◦ ν − y||T ∨ ||ν − e||T) ,

with a ∨ b := max(a, b) and HT the set of homeomorphisms of [0, T] onto
[0, T]: Strictly increasing and continuous functions that map [0, T] onto [0, T].
In order to prove J1-convergence in D it is necessary to prove convergence
with respect to the metric dT

J1
for every T > 0 except a countable set.

We use H to denote the space of continuous and strictly increasing func-
tions. Finally, we use ⇒ to denote convergence in distribution for sequences of

The Repairman Model with GROS 99

random elements in D, see Whitt [172], Sect. 3.2. The function e will be used
to denote the identity, so that e(t) = t for all t, and 1 is used for the indicator
function.

5.3 Approach and Main Results

In (5.10) and (5.11) we have expressed the queue processes WN (·) and QN (·)
as a transformation of the arrival and departure processes AN (·) and DN (·).
These arrival and departure processes are stochastically the same for the closed
queueing system with the GROS discipline and the closed queueing system
with the FCFS discipline, which has been studied in, e.g. Iglehart and Whitt
[82] and Krichagina and Puhalskii [103]. In order to infer the scaling lim-
its of the queue processes from the scaling limits of the arrival and departure
processes, we set up a map, Γ, that maps the latter processes to the former
processes.

To define Γ, consider function pairs (d, a) ∈ D∗ := Du × D↑ that satisfy

d(0) = 0, a(0) = a0,

for a real-valued quantity a0 > 0. Next, define τ0 := 0 and recursively:

τ1(d, a) := inf
s

(d(s) ≥ a(0)),

τ2(d, a) := inf
s

(d(s) ≥ a(τ1)),

...
τi(d, a) := inf

s
(d(s) ≥ a(τi−1)). (5.14)

Finally, define τ∗ as the limit point of this sequence,

τ∗ := lim
j→∞

τj(d, a), (5.15)

which may be finite or infinite. The first j such that the limit τ∗ is attained will
be denoted by j∗

j∗ := min(j : τj = τ∗), (5.16)
and j∗ can be finite or infinite. We note that the τi form a strictly increasing
sequence until the limit τ∗ is reached, i.e. τi > τi−1 for i ≤ j∗.

Define γ(t) to equal the value of the last transfer instant up to time t for
(d, a):

γ(d, a)(t) := max(τi : τi ≤ t). (5.17)

The transfer map Γ is then defined as

Γ
(

d
a

)
=
(−d + a◦γ

a − a◦γ
)

, (5.18)

with γ as in (5.17).

100 MULTIACCESS, RESERVATIONS & QUEUES

The connection with the GROS system as defined in Sect. 5.2 should be
obvious: The functions (d, a) could form a departure process from the single
server queue and an arrival process at the ante room, respectively, as defined in
(5.2) and (5.4). These τj are then the transfer instants of a GROS system until
the first special gate period, i.e. until the first cycle that commences with an
empty ante room. After this first special gate period the processes stop. Using
(q, w) := Γ(d, a), it is then clear that q equals the number of jobs at the single
server queue, cf. (5.11), up to the first special gate period. Similarly, w equals
the number of jobs in the ante room, cf. (5.10), up to the first special gate
period.

We shall prove, see Sect. 5.4.1, that Γ is a measurable mapping from D∗ to
D and, see Lemma 5.1, that Γ is continuous in the Skorohod J1-topology on
the set of continuous increasing functions that satisfy a rate constraint. These
properties enable us to invoke the continuous-mapping theorem, see, e.g. Whitt
[172], Theorem 3.4.3, and infer the fluid limits of QN (·), WN (·) from those
of DN (·), AN (·).

In particular, we consider a sequence of closed queueing systems with the
GROS discipline indexed by N , as defined in Sect. 5.2. We assume that the
service requirements at both the infinite server and the single server are ex-
ponential. In the conclusion to this chapter, we comment on less restrictive
scenarios. The distributions of the service requirements {ηi} and {η̃i} are ex-
ponential with rate λ. The service requirements at the single server {ξi} are
exponential with mean 1. The service rate equals Nμ.

Define XN := (DN , N0 + AN)/N and assume that the system starts in
steady state at the instant of a gate opening:

XN (0) ⇒ x(0) (5.19)

for N → ∞, where

x := (μe, M + μe) and M := 1 − μ/λ. (5.20)

Theorem 5.1 Assume that μ < λ. Then, for N → ∞,

Γ(XN) ⇒ Γ(x). (5.21)

The proof of Theorem 5.1 is given in Sect. 5.5.
The fluid limiting behaviour of the queues in the system is easily charac-

terised from Theorem 5.1 and is given by

Γ(x)(t) =
(

1 − (t/τ − t/τ�)
t/τ − t/τ�

)
M, (5.22)

where
τ := M/μ. (5.23)

The Repairman Model with GROS 101

τ 2τ 3τ

Fig. 5.1. Fluid limiting behaviour of fraction of jobs in ante room W N (·), dotted line, and
fraction of jobs at single server queue QN (·), solid line

Thus the fraction of the jobs in the ante room and the single server queue
combined is constant and equal to M . Consequently, the fraction of jobs in the
infinite server queue is also constant and equal to 1 − M . Both the fraction of
jobs in the ante room and the fraction of jobs at the single server queue exhibit a
periodic behaviour, illustrated in Fig. 5.1, with cycles of fixed length τ . Starting
with an empty ante room at the transfer instant, the fraction of the jobs in the
ante room increases linearly, until a fraction M of the total number of jobs is in
the ante room. At this instant the ante room becomes empty again. The fraction
of jobs at the single server queue exhibits the complementary behaviour.

Though the queue sizes have a deterministic fluid limit, this is not the case
for the sojourn times, due to the randomness in the service discipline. However,
the distribution of the sojourn time can easily be derived from the deterministic
behaviour of the queues. Indeed, a job that arrives at the ante room at time t
will wait in the ante room until the next transfer instant. Next, it will stay at the
single server for a period of time which is uniformly distributed over the, fixed,
cycle length, and which is independent of its arrival instant at the ante room.

A result to this end is stated more formally. Let F̂N
b denote an empirical

measure defined by the sojourn times of the jobs arriving in (τb−1, τb]: F̂N
b (x)

is the number of jobs in batch b with sojourn times less than or equal to x; see
(5.47) for a formal definition.

Theorem 5.2 For any b ≥ 1:

1
NM

F̂N
b (x) ⇒

{
x2

2τ2 for x ∈ [0, τ]

1 − (2τ−x)2

2τ2 for x ∈ [τ, 2τ],
(5.24)

almost surely for N → ∞.

Theorem 5.2 is proven in Sect. 5.5. It states that the empirical distribution
of the sojourn times converges to the convolution of two uniform distributions.
Thus, Theorem 5.2 corroborates a conjecture about the variance of the sojourn
time given in Sect. 4.5 (4.29).

102 MULTIACCESS, RESERVATIONS & QUEUES

5.4 Transfer Map

In this section, we derive the properties of the transfer map, Γ, defined in (5.18)
that are needed for fluid and diffusion approximations.

5.4.1 Measurability of Γ

It is relevant to note that the τi can be defined via the operations of composition
and left-continuous inverse:

τi(d, a) = (d←◦a)(τi−1) (5.25)

= (d←◦a)i(0),

where

(x◦y)(t) := x(y(t)), (5.26)

(x◦y)i := (x◦y)i−1◦x◦y, (5.27)

and, see Whitt [172], Remark 13.6.1,

(x←)(t) := inf(s > 0 : x(s) ≥ t). (5.28)

It now follows that Γ(d, a) is a well defined and measurable map from Du×
D↑ to D×D. This follows from the measurability of addition and composition
and the measurability of γ as defined in (5.17). To verify measurability of γ,
observe that each τi is measurable Du × D↑ to R due to the representation
(5.25) and the measurability of the left-continuous inverse, composition, and
the projection map. This implies measurability of the map Du × D↑ to R

j∗

which maps (d, a) to the sequence {τi, i = 0, 1, . . .}. The measurability of γ
then follows from the representation of γ as a countable sum:

γ (d, a) (t) :=

{∑j∗−1
j=0 τj1[τj ,τj+1)(t) for t ∈ [0, τ∗),

τ∗ for t ≥ τ∗,
(5.29)

and from the measurability of addition and the measurability of the function Θ
defined as

Θ(g) :=
J∑

j=0

1[gj ,gj+1)(t) (5.30)

operating on strictly increasing sequences g = (gj , j = 0, . . . , J + 1), such
that the [gj , gj+1) cover R

+.

5.4.2 Continuity of Γ

Define the space Ω̃ as the subset of function pairs (d, a) ∈ C↑↑×C↑ for which
d satisfies a rate constraint:

K1s ≤ d(t + s) − d(t) ≤ K2s (5.31)

The Repairman Model with GROS 103

for fixed positive real-valued constants K1, K2, and any s > 0, and for which

inf(a − d) > 0. (5.32)

Lemma 5.1 The transfer map Γ defined in (5.18) is continuous at (d, a) ∈ Ω̃.

Proof Consider (d, a) ∈ Ω̃ and a sequence of function pairs (dε, aε)∈Du×D↑
indexed by ε, such that

(dε, aε) J1→ (d, a) (5.33)

for ε → 0. We will show that (5.33) implies that

Γ(dε, aε) J1→ Γ(d, a) (5.34)

for ε → 0.
Because of the continuity of addition on C × D, see Whitt [170], Theorem

4.1, and the continuity of composition of C × D↑, see [170], Theorem 3.1,
it follows from the representation (5.18), that it suffices to show that (5.33)
implies

γ(dε, aε) J1→ γ(d, a) (5.35)

for ε → 0. Hence, it remains to be shown that

lim
ε→0

dT
J1

(γ(dε, aε), γ(d, a)) = 0 (5.36)

for all T except a countable set.
For this, use τi, i = 0, 1, . . . as a shorthand for the transfer instants τi(d, a)

and τ ε
i , i = 0, 1, . . . for the transfer instants τi(dε, aε). Concerning these trans-

fer instants, we prove at the end of this section that

Lemma 5.2 For all T > 0:

lim
ε→0

max
τi∈[0,T]

|τi − τ ε
i | = 0. (5.37)

Define hε as the function that maps τi onto τ ε
i , i = 0, 1, . . ., that maps T

onto T , and that is linear in between:

hε(t) :=

⎧⎨⎩
τi+1−t
τi+1−τi

τ ε
i + t−τi

τi+1−τi
τ ε
i+1 for t ∈ [τi, τi+1),

T−t
T−τi

τ ε
i + t−τi

T−τi
T for t ∈ [τi, T].

(5.38)

Fix T
∈ Disc(Γ(x)). There is ε∗ so that hε is a homeomorphism from [0, T]
onto [0, T] for all ε < ε∗. Hence, for ε < ε∗

dT
J1

(γ(d, a), γ(dε, aε)) = inf
h∈HT

||γ(d, a) − γ(dε, aε) ◦ h||T ∨ ||h − e||T
≤ ||γ(d, a) − γ(dε, aε) ◦ hε||T ∨ ||hε − e||T .

104 MULTIACCESS, RESERVATIONS & QUEUES

For t ∈ [τi, min(τi+1, T)),

γ(d, a)(t) = τi

and
γ(dε, aε)◦hε(t) = τ ε

i ,

so that
||γ(d, a) − γ(dε, aε) ◦ hε||T = max

τi∈[0,T]
|τi − τ ε

i |. (5.39)

Moreover, from the definition (5.38)

||hε − e||T = max
τi∈[0,T]

|τi − τ ε
i |. (5.40)

Consequently,
lim
ε→0

dT
J1

(γ(d, a), γ(dε, aε)) = 0

for all T
∈ Disc(Γ(x)) because of Lemma 5.2. �

Proof of Lemma 5.2. First note that there are only finitely many τi ∈ [0, T].
To verify this claim, define

Δ := inf
t∈[0,T]

(a(t) − d(t)) (5.41)

and Δ > 0 by assumption. Hence for all τi defined in (5.14) such that τi+1 ∈
[0, T], we have

τi+1 − τi = inf
δ>0

(d(τi + δ) − d(τi) ≥ a(τi) − a(τi−1))

= inf
δ>0

(d(τi + δ) − d(τi) ≥ a(τi) − d(τi))

≥ inf
δ>0

(d(τi + δ) − d(τi) ≥ Δ)

≥ inf
δ>0

(K2δ ≥ Δ)

= Δ/K2.

It follows that there are at most a finite number of τi in each finite interval
[0, T].

Next, we prove that τi is close to τ ε
i for all i, and, as there are only finitely

many τi ∈ [0, T] we can do so using induction. Now, τ0 = τ ε
0 = 0 by defini-

tion. Next, assume that
lim
ε→0

|τi − τ ε
i | = 0 (5.42)

The Repairman Model with GROS 105

for some i ≥ 0. Let η > 0 be given. We will identify ε0 such that

|τi+1 − τ ε
i+1| ≤ η (5.43)

for all ε < ε0. For this, consider

τ ε
i+1 := inf

s
(dε(s) ≥ aε(τ ε

i))

= inf
s

(d(s) ≥ a(τi) + aε(τ ε
i) − a(τ ε

i)

+ a(τ ε
i) − a(τi) − dε(s) + d(s)).

Because of (5.33), there exists ε1 such that

||(d, a) − (dε, aε)||T ≤ K1η/3

for all ε < ε1. By uniform continuity of a on [0, T], there exists δ > 0 such
that

|a(x) − a(y)| ≤ K1η/3

for all (x, y) ∈ [0, T]× [0, T] such that |x−y| ≤ δ. Moreover, by the induction
hypothesis (5.42), there exists ε2 such that

|τi − τ ε
i | ≤ δ

for all ε < ε2. Taking ε0 = ε1 ∧ ε2, we find that

τ ε
i+1 ≤ inf(d(s) ≥ a(τi) + K1η)

= τi+1 + inf(d(s + τi+1) ≥ K1η)

≤ τi+1 + η,

for all ε < ε0, where we have used the rate constraint (5.31). Similarly, we can
show that

τ ε
i+1 ≥ τi+1 − η

for ε sufficiently small. Now combining this shows (5.43) and this proves the
lemma. �

5.5 Proofs of Theorems

Proof of Theorem 5.1. We first prove that

XN ⇒ x (5.44)

106 MULTIACCESS, RESERVATIONS & QUEUES

for N → ∞ using Theorem 2.2 in Mandelbaum et al. [117]. To use this theo-
rem, observe that AN (·), DN (·), Y N (·) can be represented as⎛⎝ DN (t)

AN (t)
Y N (t)

⎞⎠ =

⎛⎝ 0
0

Y N (0)

⎞⎠+

⎛⎝ 0
1
1

⎞⎠A1

(
N

∫ t

0
λ(1 − Y N (s)/N)ds

)

+

⎛⎝ 1
0
−1

⎞⎠A2

(
N

∫ t

0
μı(Y N (s) > 0)ds

)
, (5.45)

where A1 and A2 are two independent Poisson processes. Now the theorem in
[117] states that Assumption (5.19) implies that

1
N

⎛⎝ DN

AN

Y N

⎞⎠⇒
⎛⎝ d

a
y

⎞⎠ (5.46)

for N → ∞. Here (d, a, y) uniquely solve the integral equation⎛⎝ d(t)
a(t)
y(t)

⎞⎠ =

⎛⎝ 0
0
M

⎞⎠+

⎛⎝ 0
1
1

⎞⎠(∫ t

0
λ(1 − y(s))ds

)

+

⎛⎝ 1
0
−1

⎞⎠(∫ t

0
μ1(y(s) > 0)ds

)
.

Now (5.44) immediately follows.
Statement (5.21) follows from the generalised continuous-mapping

Theorem, see [172], Theorem 3.4.3. The transfer map Γ is well defined
and measurable on Du × D↑ and continuous on Ω̃, see Theorem 5.1. From
(5.44), we verify that the limiting sequence is indeed in Ω̃ with probability 1. �

Proof of Theorem 5.1. Define

F̂N
b (x) =

AN (τN
b)∑

l=AN (τN
b−1)+1

1

⎛⎝ξ∗
DN (σN

l)+1
+

DN (τN
b)+UN

l∑
i=DN (σN

l)+2

ξi ≤ Nμx

⎞⎠ , (5.47)

where

ξ∗
DN (σN

l)+1
=

DN (σN
l)+1∑

i=1

ξi − σN
l (5.48)

The Repairman Model with GROS 107

is the residual service time of the job in service during the lth arrival to the ante
room, and

UN
l =

AN (τN
b)∑

i=AN (τN
b−1)+1

1(ui ≤ ul) (5.49)

equals the service position in the single server queue for the lth arrival to the
ante room in the processing of batch b. Consequently, F̂N

b (x) is the empirical
measure defined by the total sojourn times in ante room and service queue of
the jobs in batch b. Next, define

F̂N
W,b(x) =

AN (τN
b)∑

l=AN (τN
b−1)+1

1

⎛⎝ξ∗
DN (σN

l)+1
+

DN (τN
b)∑

i=DN (σN
l)+2

ξi ≤ Nμx

⎞⎠ ,

(5.50)
and

F̂N
Q,b(x) =

DN (τN
b+1)∑

l=DN (τN
b)+1

1

⎛⎝DN (τN
b)+UN

l∑
i=DN (τN

b)+1

ξi ≤ Nμx

⎞⎠ , (5.51)

with ξ∗ and UN
l as above. Consequently, F̂N

W,b is the empirical measure of the
sojourn times in the ante room of the jobs in batch b, and F̂N

Q,b is the empirical
measure of the sojourn times at the single server queue for batch b. We will
show that F̂N

b is the convolution of F̂N
Q,b and F̂N

W,b plus a remainder which
vanishes almost surely in the limit. Then we apply Lemma 5.3 below.

Introduce QN
b for the number of jobs in batch b:

QN
b := AN (τN

b) − AN (τN
b−1),

and define

ak,l :=
DN (τN

b)+k∑
i=DN (σN

l)+2

ξi,

ck,l(x) := 1
(
ξ∗
DN (σN

l)+1
+ ak,l ≤ Nμx

)
,

bk,l := 1
(
UN

l = k
)− 1/QN

b ,

dk :=
DN (τN

b)+k∑
i=DN (τN

b)+1

ξi,

108 MULTIACCESS, RESERVATIONS & QUEUES

and rewrite F̂N
b :

F̂N
b (x) =

AN (τN
b−1)+QN

b∑
l=AN (τN

b−1)+1

QN
b∑

k=1

1
(
ξ∗
DN (σN

l)+1
+ ak,l ≤ Nμx

)
1
(
UN

l = k
)

=
AN (τN

b−1)+QN
b∑

l=AN (τN
b−1)+1

QN
b∑

k=1

ck,l(x)1
(
UN

l = k
)

=
AN (τN

b−1)+QN
b∑

l=AN (τN
b−1)+1

QN
b∑

k=1

ck,l(x)
1

QN
b

+ ζN (x),

where

ζN (x) =
AN (τN

b−1)+QN
b∑

l=AN (τN
b−1)+1

QN
b∑

k=1

ck,l(x)bk,l.

Observe that

ck,l(x) = 1
(
ξ∗
DN (σN

l)+1
+ a0,l + dk ≤ Nμx

)
,

so that

F̂N
b (x) =

QN
b∑

k=1

F̂N
W,b (x − dk/Nμ)

1
QN

b

dF̂N
Q,b (dk/Nμ) + ζN (x).

Thus, we have expressed F̂N
b /QN

b as the convolution of two distribution func-
tions plus a remainder:

1
QN

b

F̂N
b =

1
QN

b

F̂N
W,b �

1
QN

b

F̂N
Q,b +

1
QN

b

ζN (x). (5.52)

Now as we shall prove that

lim
N→∞

1
N

ζN (x) = 0 (5.53)

almost surely, the statement (5.24) of Theorem 5.2 immediately follows from
the observation that

lim
N→∞

FN
1 � FN

2 = F1 � F2, (5.54)

if for i = 1, 2:
lim

N→∞
FN

i = Fi (5.55)

and Lemma 5.3, below.

The Repairman Model with GROS 109

Finally, to prove (5.53), note that

var
(

1
N

ζN (x)
)

= E

((
1
N

ζN (x)
)2
)

.

On squaring ζN (x), observing that |ck,l(x)| ≤ 1,

QN
b → ∞

for N → ∞, and

E
(
bk,lbk′,l′

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 k
= k′ l
= l′

−
(

1
QN

b

)2
k
= k′ l = l′

−
(

1
QN

b

)2
k = k′ l
= l′

1
QN

b

(
1 − 1

QN
b

)
k = k′ l = l′,

it follows that

lim
N→∞

var
(

1
N

ζN (x)
)

= 0,

so that (5.53) holds. �

Lemma 5.3 For b ≥ 1 and any x ∈ [0, τ] we have that

1
N

F̂N
W,b(x) ⇒ x

τ
M as N → ∞, (5.56)

and
1
N

F̂N
Q,b(x) ⇒ x

τ
M as N → ∞. (5.57)

Proof To prove (5.56), define

ĜN
b,1(x) := τN

b − inf

⎛⎝t ∈ [τN
b−1, τ

N
b) :

1
Nμ

DN (τN
b)∑

i=DN (t)+1

ξi ≤ x

⎞⎠ (5.58)

and

ĜN
b,2(x) := τN

b − inf
(

t ∈ [τN
b−1, τ

N
b) :

1
Nμ

(DN (τN
b) − DN (t)) ≤ x

)
.

(5.59)
We will show that for any δ > 0 and x ≥ 0:

lim
N→∞

P(| 1
N

F̂N
W,b(x) − μĜN

b,1(x)| > δ) = 0 (5.60)

110 MULTIACCESS, RESERVATIONS & QUEUES

and that
lim

N→∞
P(|ĜN

b,1(x) − ĜN
b,2(x)| > δ) = 0, (5.61)

so that (5.56) follows by combining the fluid limit for DN with (5.59).
To prove (5.60), note that σN

l is increasing in l, and that

ξ∗
DN (σN

l)+1
≤ ξDN (σN

l)+1.

Consequently,

ξ∗
DN (σN

l)+1
+

DN (τN
b)∑

i=DN (σN
l)+1

ξi

is decreasing in l. Hence, there is a first, smallest, l for which the condition

ξ∗
DN (σN

l)+1
+

DN (τN
b)∑

i=DN (σN
l)+2

ξi ≤ Nμx

is satisfied. Denote this first value by l∗(x):

l∗(x) := inf
(
AN (τN

b−1) + 1 ≤ l ≤ AN (τN
b) : ξ∗

DN (σN
l)+1

+ a0,l ≤ Nμx
)

,

and observe that
F̂N

W,b(x) = AN (τN
b) − l∗(x) + 1. (5.62)

Next, define t∗(x) as the value of t for which the infimum in (5.58) is
attained

t∗(x) := inf

⎛⎝τN
b−1 ≤ t < τN

b :
1

Nμ

DN (τb)∑
i=DN (t)+1

ξi ≤ x

⎞⎠ . (5.63)

Then, by definition,
σN

l∗(x)−1 < t∗(x) ≤ σN
l∗(x). (5.64)

Hence,

1
N

F̂N
W,b(x) − μĜN

b,1(x) (5.65)

= (AN (τN
b)/N − μτN

b) − (l∗(x)/N − μt∗(x)) + 1/N

≤ (AN (τN
b)/N − μτN

b) − (l∗(x)/N − μσN
l∗(x)) + 1/N

= (AN (τN
b)/N − μτN

b) − (AN (σN
l∗(x))/N − μσN

l∗(x)) + 1/N,

where the last equality follows from the identity AN (σN
l) = l for all l. From

the fluid limit for AN we get 1
N AN ⇒ μe for N → ∞ uniformly on compact

The Repairman Model with GROS 111

sets, it follows that the upper bound in (5.65) vanishes almost surely. A similar
argument, using the lower bound in (5.64), shows that a lower bound for (5.65)
vanishes almost surely and this completes the proof of (5.60).

To show (5.61), note that

1
Nμ

DN (τN
b)∑

i=DN (σN
l)+1

ξi =
DN (τN

b) − DN (σN
l)

N
+ ηN

l , (5.66)

where

ηN
l =

1
Nμ

DN (τN
b)∑

i=DN (σN
l)+1

(ξi − E(ξi)), (5.67)

with ηN
l ⇒ 0 for all l for N → ∞.

Next, to show (5.57), note that

F̂N
Q,b(x) d=

DN (τN
b+1)∑

l=DN (τN
b)+1

1

⎛⎝ 1
Nμ

l∑
i=DN (τN

b)+1

ξi ≤ x

⎞⎠ , (5.68)

and proceed as in the proof of the fluid limit for F̂N
W,b. �

5.6 Conclusion

In this chapter, we have derived fluid limits for the queue-size processes in
a closed queueing system with the GROS discipline. We have done this by a
mapping approach. Additionally, we have analysed the limit of the empirical
measure associated with the sojourn times of the jobs in batch b, in a way that
uses the fluid limits of the queue-size processes.

Several topics remain for further research. Firstly, we have concentrated on
the mapping approach and the necessary properties for the map that make this
approach work, giving less attention to the limits of the basic processes that
are mapped. In fact, we obtain scaling limits for the basic departure and arrival
processes, under restrictive exponential conditions, from a general theorem in
Mandelbaum et al. [117]. The references [75] and [103] show that the assump-
tions can be relaxed considerably, and the results in this chapter carry over
without additional effort to the more general model where one makes assump-
tions only about the first two moments of the service time distributions.

Secondly, it is relevant to obtain further refinements to the fluid ap-
proximations of the queue-size processes via diffusion approximations, see,
e.g. [172], Internet Supplement Chap. 9, or Mandelbaum and Massey [116] and
Mandelbaum and Pats [118]. In fact, it seems very well possible to apply the

112 MULTIACCESS, RESERVATIONS & QUEUES

theory in [172] to also obtain the diffusion limits of the queue-size processes
as the arrival and departure processes are continuous. However, complications
arise as the image under the mapping is not continuous as a function of time.
These discontinuities are a consequence of the gate openings which charac-
terise the service discipline of the system displayed in Fig. 4.2. These gate
openings cause an instantaneous transfer of jobs from the ante room to the
single server queue and this gives rise to discontinuities in the fluid approxi-
mations to the number of jobs in the ante room and the number of jobs in the
queue. Thus we are faced with the situation of providing a diffusion approxi-
mation in case the fluid limit is discontinuous and in which the convergence to
the fluid limit uses the J1-metric.

This topic is taken up in Denteneer and Gromoll [49] who compare the
standard approach to diffusion approximations with an alternative. The stan-
dard approach considers scaled differences between the limiting sequence and
its fluid limit. In [49] it is shown by example that this approach may break
down if the convergence to the fluid limit uses the J1-metric and an alternative
approach is proposed, based on scaled differences between the time-perturbed
limiting sequence and the fluid limit. It is shown that this procedure is non-
unique in that the diffusion limit itself may depend on the details of the time
perturbations. However, it is also proven that the total approximation to the
original process, combining the fluid and diffusion limit, is unique. An inter-
esting further topic, not considered in [49], is to determine the limit of the
empirical measure associated with the sojourn times of the jobs in batch b, in
a way that uses the diffusion limits of the queue-size processes.

Thirdly, in Sect. 4.2.1 we have described the use of a scheduled blocked ac-
cess scheme that improves on the standard blocked access protocol. Moreover,
in Sect. 4.6 we have introduced the repairman model with the Gated Partial
Random Order of Service (GPROS) discipline as an appropriate model for
trees with scheduled blocked access. The generalisation of the results in this
chapter to the case of GPROS is an interesting topic for further study. Here, it
seems that the techniques presented in this chapter are very well applicable to
the case in which a gate period is split into a fixed number of intervals. How-
ever, the case in which this number of intervals increases with the number of
machines is particularly challenging.

PART III

BULK SERVICE

Chapter 6

METHODOLOGY

In Sect. 2.3 we proposed variants of the bulk service queue as models for the
data-transmission phase of a reservation procedure. In this chapter we first fo-
cus on the classical bulk service queue and, in particular, on deriving character-
istics of the stationary queue length distribution. The bulk service queue has a
deeply rooted place in queueing theory and appeared throughout the twentieth
century in a variety of applications. The work done on the bulk service queue
runs to a large extent parallel to the maturing of queueing theory as a branch
of mathematics. We therefore give an extensive description of the historical
perspective in which the bulk service queue can be placed. Next, we give a
detailed account of the methodology that can be applied to solve for the sta-
tionary queue length distribution. The methodology can be roughly categorised
into three techniques: The generating function technique, random walk theory,
and the Wiener–Hopf technique. Depending on the technique used, character-
istics of the stationary distribution can be expressed in terms of either the roots
of some equation, or infinite series that involve convolutions of some proba-
bility distribution. The three techniques cover the existing methodology to a
large extent, both from the analytical and computational viewpoint. The his-
torical overview is given in Sect. 6.1. We then present the generating function
technique in Sect. 6.2, random walk theory in Sect. 6.3, and the Wiener–Hopf
technique in Sect. 6.4.

6.1 Historical Perspective

The first, somewhat disguised, appearance of the discrete bulk service queue
was in the theory of telephone exchanges, going by the name M/D/s queue.
This model was introduced in the 1920s by Erlang, see [25], who is considered
to be the founding father of queueing theory. At a telephone exchange with
s available channels, calls arrive according to a Poisson process. Each call

116 MULTIACCESS, RESERVATIONS & QUEUES

occupies a channel for a constant holding time. Let Xn denote the number of
calls, both waiting and in service just after the nth holding time. Then, the
following relation holds:

Xn+1 = (Xn − s)+ + An, (6.1)

where x+ = max(0, x) and An denotes the number of newly arriving calls
during the nth holding time. It should be noted that due to the assumption of
constant holding times, the calls which are in progress at the end of the nth
holding time must have started during this holding time. Also, the calls which
terminate during the nth holding time must have started before the beginning
of this holding time.

The random variables An, n = 0, 1, . . . are assumed to be i.i.d. according
to a random variable A that has a Poisson distribution. Under the assumption
that EA < s, the stationary distribution of the Markov chain defined by (6.1)
exists.

Erlang obtained expressions for both the first moment and the distribution
function of the stationary waiting time for values of s = 1, 2, 3. A first formal
proof was derived by Crommelin [41] in 1932, although this had already been
indicated by Erlang. Crommelin used the generating function technique, which
was remarkable at such an early stage, to obtain the pgf of X expressed in terms
of the s roots on and within the unit circle of zs = exp(λ(z − 1)). From this
pgf, Crommelin could obtain the distribution function of the stationary waiting
time. At about the same time, Pollaczek treated the M/D/s queue in a series
of papers, generalising it to the M/G/s queue. Pollaczek’s work [137] was
difficult to read, since he relied on rather complicated analysis, so Crommelin
[42] gave an exposition of Pollaczek’s theory for the M/D/s queue and found
his own results in agreement with those of Pollaczek. Both methods lead to
a solution in terms of infinite series that involve convolutions of the Poisson
distribution. It is noteworthy that, after a lull in the literature of more than
sixty years, Franx [68] came up recently with alternative expressions for the
stationary waiting time distribution in the M/D/s queue.

The infinite series-type result was generalised by Pollaczek [138]. In his
derivation of the stationary waiting time distribution for the G/G/1 queue,
Pollaczek obtained an identity, which was some years later obtained indepen-
dently and by a different method by Spitzer [156]. Pollaczek again used com-
plicated analysis, whereas Spitzer gave an elegant combinatorial proof. This is
probably the reason why the result goes down in history as Spitzer’s identity,
despite the efforts of Syski [158], who pointed out the equivalence of the two
results. For a detailed treatment of Spitzer’s identity, we refer to Sect. 6.3.

Methodology 117

6.1.1 From Telephony to Digital Data Transfer

Recursion (6.1) that describes the queue length process in the M/D/s queue
fits into the framework of bulk service queues. In this type of queues, at each
epoch of service, a number of customers is taken from the queue. The bulk ser-
vice queue originates from the work of Bailey [9] in 1954. Bailey modelled the
situation where a doctor is prepared to see a maximum of no more than s pa-
tients per clinic session. The new patients who arrive during the clinic session
join the queue right after the session ends. Bailey assumed that patients arrive
according to a Poisson process, and in case of deterministic visiting times (Bai-
ley allows for generally distributed visiting times) the recursive relation (6.1)
would hold. Note that both the M/D/s queue and Bailey’s bulk service queue
are continuous-time models that can be described in terms of discrete random
variables by assuming Poisson arrivals and considering the queue at specific
(embedded) points in time.

The first real discrete-time bulk service queue was introduced by Boudreau
et al. [20] in 1962. They modelled the situation of a helicopter leaving a station
every twenty minutes carrying a maximum of s passengers. Passengers that ar-
rive between subsequent departures join the queue just after the next departure
instant, again leading to (6.1), except now A can be any discrete random vari-
able (with EA smaller than s), instead of just Poisson. This generalisation does
not increase the complexity much, and so the method applied by Boudreau et
al. [20] is almost identical to that of Bailey.

Up till the mid 1970s, applications of bulk service queues were scarce. The
most notable exception is the problem of estimating delays at traffic lights that
alternate between periods of red and green (yellow is disregarded) of fixed
length. For this traffic problem, bulk service queueing theory has been used to
develop closed-form approximations for the expected delay, see, e.g. Darroch
[43], McNeill [121], Miller [125], Newell [134] and Webster [169].

The real resurrection of the interest in the bulk service queue came in the mid
1970s with the emergence of computer applications and digital data transfer.
During the last decades of the twentieth century, discrete-time models have
been applied to model digital communication systems such as multiplexers
and packet switches. In this field, the discrete bulk service queue plays a key
role due to its wide range of applications, among which the Asynchronous
Transfer Mode (ATM) switching element, see Bruneel and Kim [28] and the
references therein. For this model, time is divided into slots of fixed length,
and again (6.1) holds with Xn the queue content, in terms of packets, at the
beginning of slot n, An the number of new packets that arrive during slot n,
and s the maximum number of packets that can be served during one slot.
Besides the discrete bulk service queue, there are many other types of bulk
queueing models, for which we refer to Baghi and Templeton [8], Bruneel and
Kim [28], Cohen [35], Chaudhry and Templeton [32] and Powell [142].

118 MULTIACCESS, RESERVATIONS & QUEUES

6.1.2 Methodology

Deriving expressions for Laplace–Stieltjes transforms or pgf’s that contain
roots of some equation has become a classic procedure in queueing theory.
When applying the generating function technique, as introduced by Crommelin
[41], the consideration of roots is often inevitable. Initially, the need for roots
was considered to be a slur on the transform solutions, since the determina-
tion of the roots could be numerically troublesome and the roots themselves
have no probabilistic interpretation. However, due to advanced numerical al-
gorithms and increased computational power, root-finding has become more or
less straightforward. In Chaudhry et al. [31] it is demonstrated that root-finding
in queueing theory is well structured, in the sense that the roots are distinct for
most models and that their location is well predictable, so that numerical prob-
lems are not likely to occur.

In case of the discrete bulk service queue, there is at least one alternative to
root-finding. Using the recursive relation (6.1), the distribution of Xn+1 fol-
lows from the convolution of the distribution of (Xn−s)+ and the distribution
of A. Since discrete convolutions are not so hard to compute, see, e.g. Ackroyd
[3], one could iterate (6.1) to obtain the transient queue length distributions
which eventually will tend to the stationary distribution for increasing values
of n. This idea of iterating (6.1) can be made more rigorous using random
walk, or fluctuation, theory.

Many of the results from random walk theory are important for queueing
theory. In particular, the waiting-time process in the G/G/1 queue where cus-
tomers are served in order of arrival can be viewed as a random walk with a
reflecting barrier at zero. The evolution equation that relates the waiting times
of two subsequent customers is nowadays referred to as Lindley’s equation and
given by

Wn+1 = (Wn + Bn − Cn)+, n = 0, 1, . . . , (6.2)

where Wn denotes the waiting time of the nth arriving customer, Bn denotes
the service time of the nth arriving customer, and Cn denotes the interarrival
time between the nth and (n+1)st arriving customer. Lindley [114] showed
that, due to the max(0, ·) operator, finding the stationary waiting-time distri-
bution requires the solution of a Wiener–Hopf type integral equation. With
these observations, Lindley opened up a new field of research in which the
Wiener–Hopf technique, see, e.g. Smith [155] or De Smit [154], and other
methods from random walk theory were used to study queueing models. For
many types of queues, the Wiener–Hopf technique leads to an explicit factori-
sation in terms of the roots of some characteristic equation. For an overview
of the results from random walk theory that play a role in queueing theory we
refer to Cohen [35], Sect. I.6.6, and Asmussen [7], Chap. 8. Perhaps the most
famous result is the earlier-mentioned Spitzer’s identity which, among other

Methodology 119

things, expresses the Laplace transform of the stationary waiting-time distri-
bution in terms of an infinite series that involves convolutions of some given
probability distribution, see Sect. 6.3 for a detailed treatment.

It is quite common that for a particular queueing model, one or more of the
processes of interest may be described in terms of a Lindley equation. In fact,
(6.1) is a Lindley equation as well. This means that the methods developed
to solve Lindley’s equation for the general case become also available for the
discrete bulk service queue. Equation (6.1) allows for a Wiener–Hopf factori-
sation, which results in the same solution for the pgf of the stationary queue
length as obtained with the generating function technique. Again, the solution
requires the roots of some characteristic equation.

We have mentioned three techniques that can be applied to deal with the
discrete bulk service queue: The generating function technique, random walk
theory and the Wiener–Hopf technique. All three techniques can be applied to
solve for the stationary regime and result in the pgf of the stationary queue
length, denoted by X(z). The generating function technique is the most tradi-
tional method and leads to an expression for X(z) that includes the roots on
and inside the unit circle of some equation. Random walk theory comes into the
picture when one observes that the queue length process is a random walk with
a reflecting barrier at zero. Spitzer’s identity then yields an expression for X(z)
in terms of infinite series that involve convolutions of the probability distribu-
tion of A. The Wiener–Hopf technique allows for two solutions: X(z) in terms
of roots as obtained by the generating function technique and X(z) in terms of
infinite series as obtained from random walk theory. In that respect we might
say that the Wiener–Hopf technique can be considered as the broadest ap-
proach. However, its application is far from straightforward and requires more
advanced mathematics than is needed for the generating function technique
and random walk theory. Therefore, we first present the latter two techniques,
and then derive the same results with the Wiener–Hopf technique. Although
the three techniques each have a broad range of applications, we present them,
for reasons of clarity, in the context of the discrete bulk service queue.

6.2 Generating Function Technique

The discrete bulk service queue is defined by the recursion

Xn+1 = (Xn − s)+ + An. (6.3)

Here, time is assumed to be slotted, Xn denotes the queue length at the begin-
ning of slot n, An denotes the number of new packets that arrive during slot n,
and s denotes the maximum number of packets that can be transmitted in one
slot. Packets that arrive to the queue in slot n can be transmitted at the earli-
est from the beginning of slot n + 1. This is no restrictive assumption, since
studying the queue Xn+1 = (Xn + An − s)+ is equivalent, see Sect. 6.3.

120 MULTIACCESS, RESERVATIONS & QUEUES

We denote for a non-negative discrete random variable Y its mean by EY
or μY , its variance by σ2

Y and P(Y = j) by yj . Furthermore, we denote the
pgf of Y by Y (z), i.e., Y (z) =

∑∞
j=0 yjz

j , which is known to be analytic for
|z| < 1 and continuous for |z| ≤ 1. The number of new packets that arrives
per slot is assumed to be i.i.d. according to a discrete random variable A with
aj = P(A = j) and pgf A(z). We assume that a0 > 0, which involves no
essential limitation: If a0 were zero, we would replace the distribution {ai}i≥0

by {a′i}i≥0 where a′i = ai+m, am being the first non-zero entry of {ai}i≥0,
and a corresponding decrease in the maximum number of packets transmitted
per slot according to s′ = s − m.

Assume that μA < s. Then, the stationary queue length distribution exists,
see, e.g. Bruneel and Kim [28]. Let X denote the random variable following
the stationary distribution of the Markov chain defined by (6.3), with

xj = P(X = j) = lim
n→∞P(Xn = j), j = 0, 1, 2, (6.4)

The stationary queue length distribution satisfies the balance equations

xk =
s+k∑
j=s

xjak−j+s +
s−1∑
j=0

xjak, k = 0, 1, 2, (6.5)

Multiplying both sides of the above expression with zk and summing over all
values of k yields

X(z) =
∞∑

k=0

xk zk

=
∞∑

k=0

s+k∑
j=s

xjak−j+sz
k +

∞∑
k=0

s−1∑
j=0

xjakz
k

= z−s
∞∑

j=s

xjz
j

∞∑
k=j−s

ak−j+sz
k−j+s +

s−1∑
j=0

xj

∞∑
k=0

akz
k

= z−sX(z)A(z) − z−s
s−1∑
j=0

xjz
jA(z) +

s−1∑
j=0

xjA(z). (6.6)

Rewriting (6.6) results in the following expression for X(z), see, e.g. Bruneel
and Kim [28],

X(z) =
A(z)

∑s−1
j=0 xj(zs − zj)

zs − A(z)
, |z| ≤ 1. (6.7)

Methodology 121

The expression (6.7) is of indeterminate form, but the s unknowns x0, . . . ,
xs−1 can be determined by consideration of the zeros of the denominator in
(6.7) that lie on or within the unit circle, see, e.g. Bailey [9] or Zhao and Camp-
bell [176].

We can prove the following result:

Theorem 6.1 If μA < s and a0 > 0, the equation zs = A(z) has s roots on
or within the unit circle.

Proof See Appendix 6.A. �

The s roots of zs = A(z) in |z| ≤ 1 are denoted by z0 = 1, z1, . . . , zs−1.
For the ease of presentation we assume that these roots are distinct, but the
theory presented below can be easily extended to the case in which there are
multiple roots, see Remark 6.1.

Since the function X(z) is finite on and inside the unit circle, the numerator
of the right-hand side of (6.7) needs to be zero for each of the s roots, i.e.,
the numerator should vanish at the exact points where the denominator of the
right-hand side of (6.7) vanishes. This gives the following s equations

s−1∑
j=0

xj(zs
k − zj

k) = 0, k = 0, 1, . . . , s − 1. (6.8)

For z0 = 1, the above equation has a trivial solution, but the normalisation
condition X(1) = 1 provides an additional equation. Using l’Hôpital’s rule,
this equation is found to be

s − μA =
s−1∑
j=0

xj(s − j), (6.9)

where both sides represent the average unused service capacity.
The system of equations can be written in matrix form Ax = b, where x

denotes the column vector (x0, x1, . . . , xs−1)T , and b the column vector with
all entries zero except for the first entry which is equal to s − μA. The matrix
A is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎝

s s − 1 . . . 1
zs
1 − 1 zs

1 − z1 . . . zs
1 − zs−1

1

zs
2 − 1 zs

2 − z2 . . . zs
2 − zs−1

2
...

...
...

...
zs
s−1 − 1 zs

s−1 − zs−1 . . . zs
s−1 − zs−1

s−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.10)

122 MULTIACCESS, RESERVATIONS & QUEUES

For this system of s equations to have a unique solution, all s equations should
be linearly independent. Denote the determinant of a matrix C as |C|. For the
case that the roots z0 = 1, z1, . . . , zs−1 are distinct Bailey [9] has shown that
|A| = |V|, where V is some Vandermonde matrix. In that case, A is non-
singular and a unique solution x0, x1, . . . , xs−1 exists. Using some additional
arguments, we can derive explicit expressions for the xj as given in the follow-
ing lemma:

Lemma 6.1 If the roots z0 = 1, z1, . . . , zs−1 are distinct, the set of equations
(6.8) together with the normalisation condition (6.9) constitute a system of s
linearly independent equations. The unique solution is given by

xj = (−1)j+2(s − μY)
Ss−j + Ss−j−1∏s−1

k=1(zk − 1)
, j = 0, 1, . . . , s − 1, (6.11)

where Sj denotes the elementary symmetric function of degree j, having as
variables z1, . . . , zs−1, i.e.

Sj =
∑

1≤i1<i2<···<ij≤s−1

zi1zi2 . . . zij . (6.12)

Proof See Appendix 6.C. �

Remark 6.1 If one (or more) of the roots zs = A(z) in |z| ≤ 1 has mul-
tiplicity higher than 1, an expression like (6.11) for the xj cannot be derived.
However, for the pgf X(z) to be finite on and inside the unit circle, the nu-
merator of (6.7) should still have the same zeros as the denominator of (6.7),
and with the same multiplicity. For z0 = 1 it can be verified that this root has
multiplicity 1, and we have argued before that this root places no restriction
on the probabilities x0, . . . , xs−1 whatsoever. For all other roots, the fact that
the numerator of (6.7) should vanish does yield a restriction on x0, . . . , xs−1.
Assume, for example, that z1 has multiplicity 2. Then z1 should be a double
root of the numerator of (6.7), yielding next to (6.8),

s−1∑
j=0

xj(szs−1
1 − jzj−1

1) = 0, (6.13)

as an additional restriction on x0, . . . , xs−1. In a similar way, whatever the
multiplicity of the roots would be, we can construct s − 1 equations. Together
with the normalisation equation (6.9) this gives s equations for s unknowns.
Since the Markov chain has a unique stationary distribution, we know that this
system of equations has a unique solution.

So we can determine the probabilities x0, . . . , xs−1 either explicitly through
(6.11), or implicitly through a system of linear equations as described in

Methodology 123

Remark 6.1. From these probabilities, the entire probability distribution can
be found. That is, from matching coefficients at both sides of

(zs − A(z))X(z) = A(z)
s−1∑
j=0

xj(zs − zj), (6.14)

we find that

xj =
1
a0

(
xj−s − aj−s

s−1∑
n=0

xn −
j−s−1∑
n=0

xs+naj−s−n

)
, j ≥ s. (6.15)

6.2.1 Roots On and Inside the Unit Circle

We can go a step further and eliminate x0, . . . , xs−1 from (6.7). Write
s−1∑
j=0

xj(zs − zj) = γ1(z − 1)
s−1∏
k=1

(z − zk), (6.16)

where the constant γ1 can be determined from differentiating both sides of
(6.16) with respect to z, and using the normalisation condition (6.9). This gives

γ1 =
s − μA∏s−1

k=1(1 − zk)
, (6.17)

and so
s−1∑
j=0

xj(zs − zj) = (s − μA)(z − 1)
s−1∏
k=1

z − zk

1 − zk
. (6.18)

Together with (6.7) this yields the following result:

Theorem 6.2 The pgf of the stationary queue length distribution is given by

X(z) =
A(z)(z − 1)(s − μA)

zs − A(z)

s−1∏
k=1

z − zk

1 − zk
, |z| ≤ 1. (6.19)

Explicit expressions for the mean μX and variance σ2
X of the stationary

queue length can be obtained by evaluating derivatives of X(z) at z = 1, i.e.
μX = X ′(1) and σ2

X = X ′′(1)+X ′(1)−X ′(1)2. This gives, see, e.g. Laevens
and Bruneel [105],

μX =
σ2

A

2(s − μA)
+

1
2
μA − 1

2
(s − 1) +

s−1∑
k=1

1
1 − zk

, (6.20)

σ2
X = σ2

A +
A′′′(1) − s(s − 1)(s − 2)

3(s − μA)
+

A′′(1) − s(s − 1)
2(s − μA)

+
(

A′′(1) − s(s − 1)
2(s − μA)

)2

−
s−1∑
k=1

zk

(1 − zk)2
. (6.21)

124 MULTIACCESS, RESERVATIONS & QUEUES

6.2.2 Roots Outside the Unit Circle

When A has finite support, i.e. A ≤ m, we know that A(z) is a polynomial of
degree m. It then immediately follows that zs = A(z) has m− s roots outside
the unit circle, to be denoted by zs, zs+1, . . . , zm−1, and so we can write (with
m > s) ∑s−1

j=0 xj(zs − zj)
zs − A(z)

=
γ2
∏s−1

k=0(z − zk)∏m−1
k=0 (z − zk)

=
γ2∏m−1

k=s (z − zk)
, (6.22)

where γ2 is a constant. From the normalisation condition X(1) = 1 it follows
that γ2 =

∏m−1
k=s (1 − zk), and so we arrive at

Theorem 6.3 The pgf of the stationary queue length distribution is given by

X(z) = A(z)
m−1∏
k=s

1 − zk

z − zk
, |z| ≤ 1. (6.23)

From (6.23) we obtain, see, e.g. Zhao and Campbell [176],

μX = μA +
m−1∑
k=s

1
zk − 1

, (6.24)

σ2
X = σ2

A +
m−1∑
k=s

1
(zk − 1)2

+
m−1∑
k=s

1
zk − 1

. (6.25)

Using partial-fraction expansion, see, e.g. Henrici [79], inverting X(z) is a
simple exercise. Write

m−1∏
k=s

1 − zk

z − zk
=

m−1∑
i=s

ri

z − zi
, (6.26)

where

ri = lim
z→zi

(z − zi)
m−1∏
k=s

1 − zk

z − zk

=
∏m−1

k=s (1 − zk)∏m−1
k=s,k �=i(zi − zk)

, i = s, . . . , m − 1. (6.27)

Then rewrite the right-hand side of (6.26) as
m−1∑
i=s

ri

z − zi
= −

∞∑
n=0

m−1∑
i=s

(ri

zi

)(1
zi

)n
zn. (6.28)

Methodology 125

Hence, the probability distribution {xj}∞j=0 is given by

xj = −
j∑

n=0

m−1∑
i=s

(ri

zi

)(1
zi

)j−n
an, j = 0, 1, 2, (6.29)

Remark 6.2 For j large enough, the sum on the right-hand side of (6.29) is
dominated by the pole of X(z) with the smallest modulus, to be denoted by
ẑ. This pole can be shown to be the unique root of zs = A(z) contained in
the interval (1,∞), see, e.g. Tijms [161]. Omitting all fractions in (6.29) other
than the one that corresponds to ẑ gives the following approximation for the
tail probabilities:

xj ≈ −
j∑

n=0

(
r̂

ẑ

)(
1
ẑ

)j−n

an, j → ∞. (6.30)

6.3 Random Walk Theory

Most results from random walk theory that are important for queueing theory
have been presented in the context of the waiting time of a customer in the
G/G/1 queue, see, e.g. Asmussen [7], Chap. 10. We first show that the discrete
bulk service queue may be viewed as a special type of G/G/1 queue. Then we
invoke a result for the G/G/1 queue known as Spitzer’s identity that leads to an
alternative expression for the pgf of the stationary queue length in the discrete
bulk service queue.

The discrete bulk service queue is closely related to the discrete D/G/1
queue. The latter refers to a single server queue at which customers arrive
with discrete and deterministic interarrival times, are served on a first-come-
first-served basis and have service requirements that are i.i.d. according to a
discrete random variable A. The waiting time of the nth customer, denoted by
Wn, then satisfies, see, e.g. Servi [152],

Wn+1 = (Wn + An − s)+, n = 0, 1, (6.31)

Here, An denotes the service time of customer n and the integer s denotes the
interarrival time between two consecutive customers. When EA < s, the sta-
tionary waiting time denoted by W exists, see, e.g. Servi [152]. By comparing
(6.31) and (6.3), it is immediately clear that the pgf’s of the stationary distri-
butions of the discrete bulk service queue and the discrete D/G/1 queue are
related as X(z) = A(z)W (z). Hence, a solution for W (z) yields the solution
for X(z) and vice versa.

From the evolution equation (6.31) it can be seen that the distribution of
Wn+1 follows from the convolution of the distribution of Wn and that of

126 MULTIACCESS, RESERVATIONS & QUEUES

An − s, corrected for the max(0, ·) operator. Hence, by iterating on (6.31) one
can obtain transient characteristics of the model. This idea of iterating can be
made more rigorous using random walk theory. When we set W0 equal to zero,
the following result is known as Spitzer’s identity, see Spitzer [156], p. 207:

Theorem 6.4 (Spitzer’s identity) For 0 ≤ t < 1, |z| ≤ 1,

∞∑
n=0

tnE(zWn) = exp
(∞∑

l=1

tll−1
E(zS+

l)
)
, (6.32)

where Sl =
∑l

i=1 (Ai − s), Ai i.i.d. as A.

From (6.32) the distribution of the stationary waiting time W can be ob-
tained. When we write (6.32) as

(1 − t)
∞∑

n=0

tnE(zWn) = exp
(∞∑

l=1

tll−1
E(zS+

l − 1)
)
, (6.33)

it follows from Abel’s theorem, see [156], p. 207, or Cohen [35], p. 650, that
W (z) is given by

W (z) = lim
t↑1

(1 − t)
∞∑

n=0

tnE(zWn) = exp
(∞∑

l=1

l−1
E(zS+

l − 1)
)
. (6.34)

Now we return to the discrete bulk service queue. The pgf of the stationary
queue length is given by X(z) = A(z)W (z) with W (z) as in (6.34), which
gives the following result.

Theorem 6.5 The pgf of the stationary queue length distribution is given by

X(z) = A(z) exp
(∞∑

l=1

1
l

E(zS+
l − 1)

)
, |z| ≤ 1, (6.35)

where Sl =
∑l

i=1 (Ai − s), Ai i.i.d. according to A.

The mean and variance of the stationary queue length follow from taking
derivatives of (6.34). Note that

W ′(1) =
[∞∑

l=1

1
l
E(S+

l zS+
l −1)W (z)

]
z=1

=
∞∑
l=1

1
l
E(S+

l), (6.36)

W ′′(1) =
∞∑
l=1

∞∑
k=1

1
l
E(S+

l)
1
k

E(S+
k) +

∞∑
l=1

1
l
E(S+

l (S+
l − 1)). (6.37)

Methodology 127

Denoting by A∗l the random variable that follows the l-fold convolution of the
distribution of A, this gives after some rewriting

μX = μA +
∞∑
l=1

1
l

∞∑
j=ls

(j − ls)P(A∗l = j), (6.38)

σ2
X = σ2

A +
∞∑
l=1

1
l

∞∑
j=ls

(j − ls)2P(A∗l = j), (6.39)

which are root-free expressions for μX and σ2
X , and alternative expressions for

(6.20)–(6.21) and (6.24)–(6.25).
Moreover, introducing the short-hand notation Czj [f(z)] for the coefficient

of zj in f(z), the following result follows from (6.35):

Lemma 6.2 The stationary queue length distribution is given by (for j =
0, 1, . . .)

xj = P(W = 0)
j∑

k=0

ak Czj−k

[
exp
(∞∑

l=1

∞∑
i=1

1
l

P(A∗l = ls + i)zi
)]

,

(6.40)
and

P(W = 0) = exp
(
−

∞∑
l=1

∞∑
i=ls+1

1
l

P(A∗l = i)
)
. (6.41)

Expression (6.40) provides for each xj a root-free representation, as an al-
ternative for (6.11), (6.15) and (6.29) that do depend on the roots of zs = A(z).
For determining the coefficients Czj in (6.40), the following property can be
used:

Property 6.1 For K(z) =
∑∞

j=0 kjz
j and M(z) =

∑∞
j=0 mjz

j with
K(z) = exp(M(z)), the coefficients kj follow recursively from the coeffi-
cients mj , and vice versa, according to

k0 = exp(m0); kj =
1
j

j∑
n=1

nmnkj−n, j = 1, 2, (6.42)

Proof The proof consists of computing the kj’s successively by equating coef-
ficients in K ′(z) = M ′(z)K(z). �

Remark 6.3 Several authors, e.g. Konheim [102], Murata and Miyahara
[128], and Stadje [157], have suggested to approximate the G/G/1 queue by
its discrete counterpart. This can be done as follows. Denote by Bn the service
time of customer n and by Cn the interarrival time between customer n and

128 MULTIACCESS, RESERVATIONS & QUEUES

n + 1. Choose Bn and Cn i.i.d. according to discrete random variables B and
C, respectively. Moreover, assume C ≤ s. Then Wn satisfies

Wn+1 = (Wn +Bn−Cn)+ = (Wn +An−s)+, n = 0, 1, . . . , (6.43)

with An assumed i.i.d. as A = B − C + s. The discrete approximation to the
G/G/1 queue then fits into the framework of the D/G/1 queue.

6.4 Wiener–Hopf Technique

The Wiener–Hopf technique stems from mathematical physics, and found its
way to the field of applied probability through Smith [155], Kemperman [94]
and Cohen [34, 35], also see Regterschot [147]. Perhaps the most famous ap-
plication of the Wiener–Hopf technique is in the context of random walks, see,
e.g. Cohen [35] or Asmussen [7]. As the Wiener–Hopf technique is a powerful
tool for the analysis of Markov processes whose evolution equation contains
the max(0, ·) operator, it can also be applied in the case of the discrete bulk
service queue. We will apply the Wiener–Hopf technique to obtain alternative
derivations of the expressions for X(z) given by (6.19), (6.23) and (6.35). In
addition to this application, the Wiener–Hopf technique is also frequently ap-
plied in the analysis of the trajectories of random walks, see, e.g. Asmussen [7].

Let us first describe the role of the max(0, ·) operator. From recursion (6.3)
we have

E(zXn+1) = E(zAn1(Xn ≤ s)) + E(zXn+An−s1(Xn > s))

= P(Xn ≤ s)E(zAn) + E(zXn+An−s)

−E(zXn+An−s1(Xn ≤ s)), (6.44)

where 1(x) = 1 if x is true and 0 otherwise. Letting n → ∞ and observing
that Xn and An are independent then yields

ξ+(z)(1 − z−sA(z)) = ξ−(z), (6.45)

where ξ+(z) = X(z)/A(z) and ξ−(z) = P(X ≤ s) − E(zX−s1(X ≤ s)).
Observe that ξ+ (respectively ξ−) is analytic and bounded in |z| < 1 (respec-
tively |z| > 1), and both ξ+, ξ− are continuous up to |z| = 1.

In order to find an explicit expression for ξ+(z) we need to factorise the
function 1 − z−sA(z). In more general terms, we need to factorise a function
1−Y (z), where Y (z) is the pgf of a random variable Y for which it holds that
EY < 0 (in the case of the discrete bulk service queue Y is the difference of A
and s, i.e. Y (z) = z−sA(z)). Such a factorisation is known as the Wiener–Hopf
factorisation. The treatment of this factorisation in terms of a characteristic
function prevails in the literature, but we present the theory here for Y (z) being

Methodology 129

a pgf; Bayer [11] does this also. Furthermore, it is common practice to present
a factorisation of the bivariate function 1 − rY (z), 0 ≤ r < 1, but since
we are interested in the stationary distribution only (and not in the transient
distribution), we will stick to the analysis of the univariate function 1 − Y (z).
The Wiener–Hopf factorisation identity then reads, see Asmussen [7], p. 228,
or Prabhu [146], p. 22:

Theorem 6.6 (Wiener–Hopf factorisation identity) The following decompo-
sition exists:

1 − Y (z) = φ+(z)φ−(z), |z| = 1, (6.46)
where φ+ (respectively φ−) is analytic and bounded in |z| < 1 (respec-
tively |z| > 1), and both φ+, φ− are continuous up to |z| = 1.

Hence, once we know the functions φ+, φ− we can write (6.45) as

ξ+(z)φ+(z) =
ξ−(z)
φ−(z)

, (6.47)

where the left-hand side (respectively right-hand side) of (6.47) represents a
function that is analytic and bounded in |z| < 1 (respectively |z| > 1), and both
sides of (6.47) are functions continuous up to |z| = 1. Therefore, their analytic
continuation contains no singularities in the entire complex plane. Liouville’s
theorem then says

Theorem 6.7 (Liouville) Let f(z) be analytic for all values of z and let
|f(z)| < K for all values of z, where K is a constant (so that |f(z)| is bounded
as |z| → ∞). Then f(z) is seen to be constant.

Whence upon using Liouville’s theorem the left-hand side of (6.47) is constant,
and since ξ+(1) = 1, we obtain

ξ+(z) =
φ+(1)
φ+(z)

. (6.48)

With the machinery described above, we present alternative proofs of Theo-
rems 6.2, 6.3 and 6.5, where we rely on three different factorisations of the
function 1 − Y (z).

Alternative proof of Theorem 6.5. Start from the basic identity

1 − z = exp(ln(1 − z)) = exp
(
−

∞∑
l=1

1
l
zl
)
, |z| ≤ 1, z
= 1. (6.49)

We have denoted
∑l

i=1 (Ai − s) by Sl for which it holds that E(zSl) =
(z−sA(z))l and |z−sA(z)| < 1 for |z| = 1. Hence, we can write (for |z| = 1)

1 − z−sA(z) = exp
(
−

∞∑
l=1

1
l
(z−sA(z))l

)
= φ+(z)φ−(z), (6.50)

130 MULTIACCESS, RESERVATIONS & QUEUES

where

φ+(z) = exp
(
−

∞∑
l=1

1
l
E(zSl1(Sl > 0))

)
, (6.51)

φ−(z) = exp
(
−

∞∑
l=1

1
l
E(zSl1(Sl ≤ 0))

)
. (6.52)

Observe that

φ+(1) = exp
(
−

∞∑
l=1

1
l
P(Sl > 0)

)
, (6.53)

which by (6.48) completes the proof. �

The type of Wiener–Hopf factorisation as outlined above can be applied for
the more general G/G/1 queue in a similar fashion. For a subclass of queues,
the Wiener–Hopf technique allows for an explicit factorisation that relies on
the consideration of the roots of some equation, see, e.g. Asmussen [7], Cohen
[35], or Kleinrock [98]. For the discrete bulk service queue, the knowledge
on the roots of zs = A(z) given by Theorem 6.1 can be applied to prove the
following two previously derived results:

Alternative proof of Theorem 6.2. We construct an explicit factorisation of
1 − z−sA(z) by choosing

φ+(z) =
zs − A(z)∏s−1
k=0(z − zk)

, φ−(z) =
∏s−1

k=0(z − zk)
zs

. (6.54)

With

φ+(1) = lim
z→1

zs − A(z)
(z − 1)

∏s−1
k=1(z − zk)

=
s − μA∏s−1

k=1(1 − zk)
, (6.55)

this completes the proof. �

Alternative proof of Theorem 6.3. In case A ≤ m, we construct an explicit
factorisation of 1 − z−sA(z) by choosing

φ+(z) = γ
m−1∏
k=s

(z − zk), φ−(z) =
∏s−1

k=0(z − zk)
zs

, (6.56)

with γ a constant. We have that

φ+(1) = γ

m−1∏
k=s

(1 − zk), (6.57)

which completes the proof. �

Methodology 131

6.5 Summary

The generating function technique is widely applied in the discrete-time
modelling of communication systems. The required procedures of numerical
root-finding are known to a broad community of engineers, including electrical
engineers and computer scientists. On the contrary, the Wiener–Hopf technique
and random walk theory, while often of great interest to theoreticians, are less
popular among practitioners, probably due to the advanced mathematical tech-
niques involved and the lack of clearly described computational schemes for
determining certain performance characteristics. For the discrete bulk service
queue, this separation between theoretical and practical results is far less clear-
cut. The results obtained by all three methods in fact might complement each
other well, since clear descriptions of the computational schemes are available.

Depending on the method used, one can obtain a transform solution of the
stationary queue length distribution either in terms of the roots of zs = A(z)
or in terms of infinite series that involve convolutions of the distribution of
A. The solution in terms of roots can be obtained using either the generating
function technique or the Wiener–Hopf technique. The solution in terms of the
infinite series follows from random walk theory (Spitzer’s identity), and can
also be obtained using the Wiener–Hopf technique. All four options have been
demonstrated in this chapter. To make a rough distinction, two courses can be
followed in obtaining characteristics of the stationary queue length distribution
of the discrete bulk service queue: roots or infinite series. That is, for the mean,
variance and probability distribution we have the expressions in terms of roots
and the expressions in terms of infinite series. From a practical viewpoint, both
courses have their difficulties: Roots need to be determined and infinite series
need to be truncated.

In Janssen and van Leeuwaarden [87], the expressions in terms of infinite se-
ries are derived from the expressions in terms of roots using Fourier sampling.
In Janssen and van Leeuwaarden [88], analytic representations of the roots are
presented for a large class of distributions. The infinite series are further inves-
tigated in Janssen and van Leeuwaarden [89]. In particular, the infinite series
should be truncated, and measures are constructed to characterise their speed
of convergence. In Denteneer et al. [50] sharp bounds are derived for the mean
and variance of the stationary queue length. The bounds are in closed form and
hold for a general arrival process.

APPENDIX 6.A: Proof of Theorem 6.1

This appendix is based on Adan et al. [4]. Rouché’s theorem is the standard
tool for proving Theorem 6.1, since it is typically used to determine regions of
the complex plane in which there may be zeros of a given analytic function.
We focus on the zeros of the function zs − A(z) (i.e. the roots of zs = A(z))
on or within the unit circle.

132 MULTIACCESS, RESERVATIONS & QUEUES

Rouché’s theorem is a direct consequence of the argument principle and the
scope of application of Rouché’s theorem goes well beyond the field of queue-
ing theory. While the verification of the conditions needed to apply Rouché’s
theorem can become rather difficult, in queueing theory this is usually straight-
forward. For most queueing applications, the region of interest is typically the
unit disk, and the ingredient that makes Rouché’s theorem work is oftentimes
the stability condition. This is why Rouché’s theorem is a popular and stan-
dardised tool in queueing theory.

However, in order to apply Rouché’s theorem it is required that A(z) has
a radius of convergence larger than 1, see Lemma 6-6.A.3, which is not true
in general. A pgf obeys all the rules of power series with non-negative coef-
ficients, and since A(1) = 1 the radius of convergence of a pgf is at least 1.
The shoe thus pinches for those pgf’s for which the radius of convergence is
exactly 1, some examples are given at the end of this section.

In papers like Bruneel [27], Darroch [43], Powell and Humblet [143], Servi
[152] and Zhao and Campbell [176], the assumption is made that A(z) has a
radius of convergence larger than 1, so that Rouché’s theorem can be applied.
In this chapter, we impose no such restriction on A(z). Instead of excluding
those functions A(z) with radius of convergence 1, we present a proof of The-
orem 6.1 that does not rely on Rouché’s theorem and holds for general A(z).

Several other authors proved similar generalisations. In [2], Abolnikov and
Dukhovny apply the so-called generalised principle of the argument, that
was proven by Gakhov et al. [71] in 1973, to give a proof for general A(z).
Klimenok [100] extended this result to a larger class of functions, so including
zs−A(z), again using the generalised principle of the argument. An alternative
approach to deal with general A(z) was presented by Boudreau et al. [20]. Un-
der the condition that all zeros in the unit disk are distinct, they were able to ap-
ply the implicit function theorem to prove the existence of the zeros. However,
examples can be constructed for which there are multiple zeros, and so this
approach does not cover the issue in full generality. The key idea of Boudreau
et al. is to study the parameterised function zs − tA(z), 0 ≤ t < 1, and then
letting t tend to one. The same idea, without making the assumption of distinct
zeros, has been used by Gail et al. [70] for a larger class of functions, including
zs − A(z). We present an elementary proof of the existence of the zeros for
general A(z) using the classical argument principle and truncation of A(z).

We first describe the classical application of Rouché’s theorem, and subse-
quently give our proof for general A(z).

Classical Setting

Let us first state Rouché’s theorem, see, e.g. Titchmarsh [162]:

Theorem 6-6.A.8 (Rouché) Let the bounded region D have as its bound-
ary a simple closed contour C. Let f(z) and g(z) be analytic both in D and

Methodology 133

on C. Assume that |f(z)| < |g(z)| on C. Then f(z) − g(z) has in D the same
number of zeros as g(z), all zeros counted according to their multiplicity.

When A(z) has a radius of convergence larger than one, we can prove the
following result concerning the number of zeros on and within the unit circle
of zs − A(z) by using Rouché’s theorem:

Lemma 6-6.A.3 Let A(z) be a pgf that is analytic in |z| ≤ 1 + ν, ν > 0.
Assume that A′(1) < s, s ∈ N. Then the function zs−A(z) has exactly s zeros
in |z| ≤ 1.

Proof Define the functions f(z) := A(z), g(z) := zs. Because f(1) = g(1)
and f ′(1) = A′(1) < s = g′(1), we have, for sufficiently small ε > 0,

f(1 + ε) < g(1 + ε). (6.A.1)

Consider all z with |z| = 1 + ε. By the triangle inequality and (6.A.1) we have
that

|f(z)| ≤
∞∑

j=0

aj |z|j = f(1 + ε) < g(1 + ε) = |g(z)|, (6.A.2)

and hence |f(z)| < |g(z)|. Because both f(z) and g(z) are analytic for |z| ≤
1 + ε, Rouché’s theorem tells us that g(z) and f(z) − g(z) have the same
number of zeros in |z| ≤ 1 + ε. Letting ε tend to zero yields the proof. �

New Setting

Before we present our main result, we first prove a result on the number and
location of zeros of zs − A(z) on the unit circle. We define the period p of
a series

∑∞
−∞ bjz

j as the largest integer for which bj = 0 whenever j is not
divisible by p.

Lemma 6-6.A.4 Let A(z) be a pgf of some nonnegative discrete random
variable with A(0) > 0. Assume A(z) is differentiable at z = 1 and A′(1) <
s, where s is a positive integer. If zs − A(z) has period p, then zs − A(z)
has exactly p zeros on the unit circle given by the pth roots of unity τk =
exp(2πik/p), k = 0, 1, . . . , p − 1. In each of these zeros, the derivative of
zs − A(z) does not vanish.

Proof Obviously, any zero ξ of zs − A(z) with |ξ| = 1 is simple, since
|A′(ξ)| ≤ A′(|ξ|) = A′(1) < s and, thus, sξs−1 − A′(ξ)
= 0. Furthermore,
for any z with |z| = 1, |A(z)| = A(1) iff zk = 1 whenever ak > 0. This
easily follows from the fact that |a0 + akz

k| < a0 + ak if zk
= 1. So, for z
with |z| = 1 and A(z) − zs = 0 it follows that zk = 1 for all k with ak > 0,
and zs = 1. This implies that zp = 1, which completes the proof. �

134 MULTIACCESS, RESERVATIONS & QUEUES

Note that the requirement a0 = A(0) > 0 involves no essential limitation:
If a0 were zero we would replace the distribution {ai}i≥0 by {a′i}i≥0 where
a′i = ai+m, am being the first non-zero entry of {ai}i≥0, and a corresponding
decrease in s according to s′ = s − m.

We are now in a position to give the main result:

Theorem 6-6.A.9 Let A(z) be a pgf of some nonnegative discrete random
variable with A(0) > 0. Assume A(z) is differentiable at z = 1 and A′(1) <
s, where s is a positive integer. Also, let zs − A(z) have period p. Then the
function zs − A(z) has p zeros on the unit circle given by τk = exp(2πik/p),
k = 0, 1, . . . , p − 1 and exactly s − p zeros in |z| < 1.

Proof Lemma 6-6.A.4 tells us that F (z) = zs − A(z) has p equidistant zeros
on the unit circle, and so it remains to prove that this function has exactly s−p
zeros within the unit circle. Thereto, define, for N ∈ N, the truncated pgf

AN (z) =
N−1∑
j=0

ajz
j , (6.A.3)

where N is a multiple of p. Then FN (z) = zs − AN (z) has obviously s zeros
in z ∈ D = {z ∈ C : |z| ≤ 1}, since AN (z) is a polynomial satisfying
A′

N (1) < s, and Lemma 6-6.A.3 thus applies. By Lemma 6-6.A.4 we know
that FN (z) has p simple and equidistant zeros on the unit circle. We further
have that

|A(z) − AN (z)| ≤ 2
∞∑

j=N

aj , |z| ≤ 1, (6.A.4)

|A′(z) − A′
N (z)| ≤ 2

∞∑
j=N

jaj , |z| ≤ 1. (6.A.5)

Thus, AN (z) and A′
N (z) converge uniformly to A(z) and A′(z) on z ∈ D,

respectively. Moreover, if G : D → C is continuous, then G(AN (z)) is uni-
formly convergent to G(A(z)) on z ∈ D.

Let z on C = {z ∈ C : |z| = 1}. If for all n ∈ N there is a zn ∈ D with
0 < |z − zn| < 1

n and F (zn) = 0, then F (z) = 0 and

F ′(z) = lim
n→∞

F (zn) − F (z)
zn − z

= 0. (6.A.6)

However, this is impossible by Lemma 6-6.A.4. Hence, there is an η > 0 such
that F (ξ)
= 0 for all ξ ∈ D(z, η) := {ξ ∈ D : 0 < |ξ − z| < η}. Since
C is compact, it can be covered by finitely many D(z, η)’s. Hence, there is a
0 < r < 1 such that F (z) has no zeros in r ≤ |z| < 1.

Methodology 135

Fig. 6.A.1. Graphical representation of the compact set E

Now we prove that for large N the function FN (z), as the function F (z), has
no zeros in r ≤ |z| < 1. Thereto, we show that there is an ε > 0 and M ∈ N

such that FN (z)
= 0 for all N ≥ M and 0 < |z−τk| < ε, k = 0, 1, . . . , p−1.
Because F ′(z) is continuous and F ′

N (z) converges uniformly to F ′(z) on z ∈
D, there are ε > 0 and M ∈ N such that (for k = 0, 1, . . . , p − 1)

|F ′
N (z) − F ′(τk)| < δ < |F ′(τk)|, 0 < |z − τk| < ε, N ≥ M. (6.A.7)

Furthermore, we have (for k = 0, 1, . . . , p − 1)

|FN (z) − F ′(τk)(z − τk)| =
∣∣∣ ∫

[τk,z]
(F ′

N (s) − F ′(τk))ds
∣∣∣, (6.A.8)

where the integration is carried out along the straight line that connects τk and
z. Hence, for 0 < |z−τk| < ε and N ≥ M , we obtain (for k = 0, 1, . . . , p−1)∣∣∣∫

[τk,z]
(F ′

N (s) − F ′(τk))ds
∣∣∣ ≤ |z − τk| max

s∈[τk,z]
|F ′

N (s) − F ′(τk)|< |z − τk|δ.
(6.A.9)

So, it follows that for 0 < |z − τk| < ε and N ≥ M (for k = 0, 1, . . . , p − 1)

|FN (z)| = |FN (z) − F ′(τk)(z − τk) + F ′(τk)(z − τk)|
≥ |F ′(τk)||z − τk| − |FN (z) − F ′(τk)(z − τk)|
> (|F ′(τk)| − δ)|z − τk| > 0.

Since FN (z) converges uniformly to F (z) and F (z)
= 0 on the compact
set, see Fig. 6.A.1,

E = {z ∈ C : r ≤ |z| ≤ 1} \
p−1⋃
k=0

D(τk, ε), (6.A.10)

136 MULTIACCESS, RESERVATIONS & QUEUES

there exists an K ∈ N such that FN (z)
= 0 for all N ≥ K and z ∈ C with
r ≤ |z| < 1. Hence, for all N ≥ K the number of zeros of FN (z) with |z| < r
is equal to s−p. This number can be expressed by the argument principle, see,
e.g. Titchmarsh [162], as follows

s − p =
1

2πi

∮
|z|=r

F ′
N (z)

FN (z)
dz. (6.A.11)

The integrand converges uniformly to F ′(z)/F (z), and thus

1
2πi

∮
|z|=r

F ′(z)
F (z)

dz = lim
N→∞

1
2πi

∮
|z|=r

F ′
N (z)

FN (z)
dz = s − p. (6.A.12)

Hence, the number of zeros of F (z) with |z| < r is also s− p. This completes
the proof. �

Obviously, Theorem 6-6.A.9 proves Theorem 6.1. Due to Theorem 6-6.A.9,
the A(z) with a radius of convergence of 1 do not have to be excluded from
the analysis of the zeros of zs − A(z). This further means that these pgf’s
can be incorporated in the general formulation of the solution to the queueing
models of interest. The A(z) that have radius of convergence 1 are typically
those associated with heavy-tailed random variables. Some examples are given
below.

(1) The discrete Pareto distribution, e.g. Johnson et al. [90], defined by

aj = c
1

jp+1
, j = 1, 2, . . . , (6.A.13)

with
c =
(∞∑

j=1

aj

)−1
= ζ(p + 1)−1, (6.A.14)

where ζ(·) is called the Riemann zeta function and p > 1. For k < p, the
kth moment μk of the discrete Pareto distribution is given by

μk =
ζ(p − k + 1)

ζ(p + 1)
, (6.A.15)

whereas for k ≥ p the moments are infinite. The discrete Pareto distribu-
tion is also known as the Zipf or Riemann zeta distribution.

(2) The discrete standard lognormal distribution, defined by

aj = ce−
(log j)2

2 , j = 1, 2, . . . , (6.A.16)

Methodology 137

where c is a normalisation constant.

(3) The discrete distribution, related to the continuous Weibull distribution,
defined by

aj = cp−
√

j , j = 0, 1, . . . , (6.A.17)

where p > 1 and c is a normalisation constant.

(4) The Haight’s zeta distribution, see, e.g. Johnson et al. [90], defined by
(with p > 1)

aj =
1

(2j − 1)p
− 1

(2j + 1)p
, j = 1, 2, (6.A.18)

APPENDIX 6.B: Numerical Issues

Back to the Roots

The applicability of the generating function approach indisputably depends on
finding the roots of zs = A(z) on and inside the unit circle, because these
are needed to determine the unknowns x0, x1, . . . , xs−1 in (6.7). Because this
issue of root-finding goes a long way back in queueing theory, it has often been
addressed, both from analytical and numerical perspectives. We now give a
short overview of this root-finding for the Poisson case A(z) = exp(λ(z−1)),
λ < s, and point out where extensions can be made to other distributions of A.

The easiest way to determine the roots in the Poisson case is to apply suc-
cessive substitution to a fixed-point equation. We know that the s roots of
zs = A(z) in |z| ≤ 1 satisfy

z = wA(z)1/s = w exp(λ(z − 1)/s), (6.B.1)

ws = 1. For each feasible w, (6.B.1) can be shown to have one unique root in
|z| ≤ 1. Moreover, the equations can be solved by successive substitutions as

z
(n+1)
k = wkA(z(n)

k)1/s, k = 0, 1, . . . , s − 1, (6.B.2)

where wk = exp(2πik/s), i =
√−1, and starting values z

(0)
k = 0. It can

be shown that the fixed-point equations (6.B.2) converge to the desired roots.
Adan and Zhao [5] distinguish a class of compound Poisson distributions for
which the method works. For more general discrete distributions, the method
is further investigated in Janssen and van Leeuwaarden [88].

For the Poisson case, an exact description of the roots can be obtained as
well. In [88] it is shown, using the Lagrange inversion theorem, that the roots
are given by

zk =
∞∑
l=1

e−lθ (lθ)l−1

l!
wl

k, k = 0, 1, . . . , s − 1, (6.B.3)

138 MULTIACCESS, RESERVATIONS & QUEUES

where θ = λ/s. One could truncate the infinite series over l in (6.B.3) to
determine the roots. For a large class of discrete distributions, exact expressions
for the roots, similar to (6.B.3), are derived in [88].

Although the class of distributions of A for which one can derive an exact
expression such as (6.B.3) is far larger than the class for which the method
of successive substitutions (6.B.2) works, see [88], neither method works for
all distributions. Therefore, the most general method relies on numerical tech-
niques. Chaudhry et al. [31] have developed an application to solve root-finding
problems in queueing theory numerically. In our experience, this application
works for almost all distributions.

Inversion of a pgf

For the inversion of a pgf we use a technique of Abate and Whitt [1] that relies
on the Fourier series method. A distribution p0, p1, . . ., can be retrieved from
its pgf P (z) =

∑∞
k=0 pkz

k via

pk =
1

2πi

∮
Cr

P (z)
zk+1

dz, (6.B.4)

where i =
√−1 and Cr is a circle about the origin of radius r, 0 < r < 1.

Abate and Whitt [1] approximate (6.B.4) by

p̂k =
1

2krk

2k∑
j=1

(−1)jRe(P (reijπ/k)), (6.B.5)

and derive for 0 < r < 1, k ≥ 1 the following error bound

|pk − p̂k| ≤ r2k

1 − r2k
. (6.B.6)

For practical purposes one can think of the error bound as r2k, because
r2k/(1− r2k) ≈ r2k for r2k small. To have accuracy up to the γth decimal, we
let r = 10−γ/2k.

APPENDIX 6.C: Proof of Lemma 6.1

By Cramer’s rule we have that xj = |Aj+1|/|A|, j = 0, 1, . . . , s− 1, where
Aj+1 is the matrix A except for the (j+1)st column being replaced by b. Since

Methodology 139

|A| = |AT |, we find

|A| =

∣∣∣∣∣∣∣∣∣∣
s zs

1 − 1 . . . zs
s−1 − 1

s − 1 zs
1 − z1 . . . zs

s−1 − zs−1

...
...

...
...

1 zs
1 − zs−1

1 . . . zs
s−1 − zs−1

s−1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
1 z1 − 1 . . . zs−1 − 1
1 z1(z1 − 1) . . . zs−1(zs−1 − 1)
...

...
...

...
1 zs−1

1 (z1 − 1) . . . zs−1
s−1(zs−1 − 1)

∣∣∣∣∣∣∣∣∣∣
,

where the last equality follows by subtracting row r + 1 from row r for each
r = 1, 2, . . . , s−1. Dividing each column k+1 by zk −1 for k = 1, . . . , s−1
yields the following result

|A| =
s−1∏
k=1

(zk−1)

∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1
1 z1 . . . zs−1

...
...

...
...

1 zs−1
1 . . . zs−1

s−1

∣∣∣∣∣∣∣∣∣∣
=

s−1∏
k=1

(zk−1)
∏

0≤n<k≤s−1

(zk−zn),

where the last equality follows from the special form of the determinant of a
Vandermonde matrix, see, e.g. Bellman [12].

To compute the determinant of Aj+1 we expand this matrix on its j + 1-st
column, which gives |Aj+1| = (−1)j+2(s − μY)|B|, where

|B| =

∣∣∣∣∣∣∣∣∣∣∣

s . . . s − j − 1 s − j + 1 . . . 1

zs
1 − 1 . . . zs

1 − zj−1
1 zs

1 − zj+1
1 . . . zs

1 − zs−1
1

...
...

...
...

...
...

zs−1
s−1 − 1 . . . zs

s−1 − zj−1
s−1 zs

s−1 − zj+1
s−1 . . . zs

s−1 − zs−1
s−1

∣∣∣∣∣∣∣∣∣∣∣
.

140 MULTIACCESS, RESERVATIONS & QUEUES

We then transpose the matrix B, and subtract column k + 1 from column k to
obtain

|B| = |BT | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z1 − 1 z2 − 1 . . . zs−1 − 1
z1(z1 − 1) z2(z2 − 1) . . . zs−1(zs−1 − 1)

...
...

...
...

zj−1
1 (z1 − 1) zj−1

2 (z2 − 1) . . . zj−1
s−1(zs−1 − 1)

zj+1
1 − zj−1

1 zj+1
2 − zj−1

2 . . . zj+1
s−1 − zj−1

s−1

zj+1
1 (z1 − 1) zj+1

2 (z2 − 1) . . . zj+1
s−1(zs−1 − 1)

...
...

...
...

zs−1
1 (z1 − 1) zs−1

2 (z2 − 1) . . . zs−1
s−1(zs−1 − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Dividing each column k + 1 by zk − 1 for k = 1, . . . , s − 1 then yields

|B| =
s−1∏
k=1

(zk − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . zs−1
...

...
...

...
zj−2
1 zj−2

2 . . . zj−2
s−1

zj−1
1 + zj

1 zj−1
2 + zj

2 . . . zj−1
s−1 + zj

s−1

zj+1
1 zj+1

2 . . . zj+1
s−1

...
...

...
...

zs−1
1 zs−1

2 . . . zs−1
s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since the determinant is a linear operator we can rewrite it as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . zs−1
...

...
...

...
zj−2
1 zj−2

2 . . . zj−2
s−1

zj−1
1 zj−1

2 . . . zj−1
s−1

zj+1
1 zj+1

2 . . . zj+1
s−1

...
...

...
...

zs−1
1 zs−1

2 . . . zs−1
s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
z1 z2 . . . zs−1
...

...
...

...
zj−2
1 zj−2

2 . . . zj−2
s−1

zj
1 zj

2 . . . zj
s−1

zj+1
1 zj+1

2 . . . zj+1
s−1

...
...

...
...

zs−1
1 zs−1

2 . . . zs−1
s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.C.1)

Methodology 141

The matrices in (6.C.1) are very similar to Vandermonde matrices, except that
one row has been deleted. As for Vandermonde matrices, the determinants of
such matrices have a nice form, see Pólya and Szegö [140], Exercise 10, p. 93,
and Neagoe [131]:

|B| =
s−1∏
k=1

(zk − 1)

⎛⎝ ∏
1≤n<k

(zk − zn)Ss−j +
∏

1≤n<k

(zk − zn)Ss−j−1

⎞⎠ ,

where the functions Ss−j and Ss−j−1 are defined as in (6.12). Altogether, this
gives that

xj =
|Aj+1|
|A| = (−1)j+2(s − μY)

Ss−j + Ss−j−1∏s−1
k=1(zk − 1)

,

which completes the proof. An alternative proof of Lemma 6.1 has been given
in Zhao and Campbell [176]. �

Chapter 7

PERIODIC SCHEDULING

For modelling data transfer organised via a reservation procedure, we proposed
in Sect. 2.3 two models, referred to as fixed boundary model and flexible bound-
ary model. For these models, time is divided into slots, and slots are grouped
into frames. The fixed boundary model divides each frame into a fixed number
of request and data slots. The flexible boundary model also uses this division,
but additionally, the unused data slots (due to lack of data packets) are turned
into request slots. For both models, we first consider the queue length at frame
boundaries. The stationary queue length distribution in either model can be
determined from a rather standard application of the generating function tech-
nique (demonstrated in Sect. 6.2 for the discrete bulk service queue). Due to
the periodic scheduling, however, it is far less straightforward to analyse the
stationary delay. By adopting a technique developed in Bruneel and Kim [28]
and Kang and Steyaert [92], we succeed in deriving the probability generating
function of the stationary delay.

7.1 Introduction

We elaborated earlier on how the fixed and flexible boundary models arise in
the context of data-transmission procedures in cable access networks regulated
by a reservation mechanism in which actual data transmission is preceded by a
request procedure, see Sect. 2.3. Both the request messages and the actual data
transmission take place on the same upstream channel, and hence each slot can
either be used for a request message or for a data transmission.

The fixed and flexible boundary models both serve as models for the data
queue, defined as those data packets for which transmission has already been
requested, but that are still waiting to be transmitted. Clearly, if a slot is used
for reservation (request slot), new packets can enter this queue, and if a slot is
used for data transmission (data slot), a packet can leave this queue.

144 MULTIACCESS, RESERVATIONS & QUEUES

Because the transmission delay requires that scheduling decisions are taken
in advance, one is naturally led to consider frame-based scheduling. The nature
of each slot in the frame is periodically determined and broadcast to all the
stations. In this chapter we assume that the timing is such that each station is
aware of the layout of a frame before it actually starts.

The chapter is structured as follows. In Sect. 7.2, we describe and motivate
the models in more detail. In Sect. 7.3, we derive the pgf of the stationary
queue length. A closed-form expression for the pgf of the packet delay for
both models is derived in Sect. 7.4. A numerical comparison of the two models
is given in Sect. 7.5, followed by some conclusions in Sect. 7.6.

7.2 Model Description

The fixed and flexible boundary models were introduced in Sect. 2.3. We will
repeat their exact definitions and refer to Sect. 2.3 for a discussion of the model
assumptions in view of a reservation procedure.

Time is assumed to be slotted, with a given slot duration. In case of the fixed
boundary model the schedule of each frame is fixed. That is, a frame defined as
f consecutive slots consists of c request slots followed by s := f−c data slots.
Let the random variable Yni denote the number of arriving packets during the
ith request slot of frame n, and assume that the sequence Yni is i.i.d. for all n
and i. We further assume that packets that arrive during frame n cannot depart
from the queue until the beginning of frame n + 1. This leads to the recursion

Xn+1 = (Xn − s)+ +
c∑

i=1

Yni, (7.1)

where Xn denotes the queue length at the beginning of frame n and x+ :=
max(0, x).

The fixed boundary mechanism seems inefficient, in the sense that if the
queue length is smaller than s, it leaves slots unused which could alternatively
be scheduled as request slots. This motivates the flexible boundary model in
which these unused slots are designated as request slots, yielding the recursion

X̃n+1 = (X̃n − s)+ +
c+(s−X̃n)+∑

i=1

Yni, (7.2)

where, for notational purposes, we add a tilde to the random variables related to
the flexible boundary model. We refer to the c request slots that are scheduled
at the beginning of every frame as forced request slots.

7.2.1 Scheduling Parameter c

The number of forced request slots c in (7.1) and (7.2) can be interpreted as
the amount of bandwidth guaranteed for the request procedure: In each frame

Periodic Scheduling 145

there are at least c request slots. For the flexible boundary model there are
two, unfortunately conflicting, heuristics that guide a judicious choice of c. On
the one hand, setting c small implements a greedy schedule which empties the
data queue as quickly as possible, which suggests that this is the appropriate
schedule to minimise the data-queue size. On the other hand, setting c large
smooths out the arrival process, and intuition suggests that this also helps to
reduce the data-queue size. In choosing the right value of c, one should strike
the proper balance between these two considerations. One of the goals of this
chapter is to investigate the impact of c through a mathematical analysis of the
models. Numerical results are presented in Sect. 7.5.

7.3 Queue Length

In this section we derive the pgf of the stationary queue length for both the
fixed and flexible boundary model. For each model, we first present the results
for the queue length at frame boundaries, from which the results for the queue
length throughout a frame follow.

7.3.1 Fixed Boundary Model

Let us denote by Y a random variable that has the same distribution as the
number of arriving packets during one request slot, i.e. Yni are i.i.d. copies of
a discrete random variable Y for all n and i. Let Y (z) be the pgf of Y and
denote the mean and variance of Y by μY and σ2

Y , respectively. Clearly, to
have stability, it is required that the expected number of arriving packets in a
frame is less than the maximum number of packets that can be transmitted in a
frame, i.e.

cμY < s. (7.3)

We have denoted the queue length at the beginning of frame n by Xn. Then
{Xn, n ∈ Z

+} constitutes a discrete-time Markov chain, with transitions gov-
erned by (7.1). As is easily verified, the following conditional expectation holds

E(zXn+1 |Xn = k) =

{
Y (z)c, k < s,

zk−sY (z)c, k ≥ s.
(7.4)

For reasons of brevity, we introduce the random variable A that is distributed
according to the c-fold convolution of the distribution of Y , that is, the pgf of A
is given by A(z) = Y (z)c. We denote the mean and variance of A by μA

and σ2
A.

Let X be a random variable distributed as the stationary distribution of the
queue length, with

xk = P(X = k) = lim
n→∞P(Xn = k), k = 0, 1, 2, . . .

146 MULTIACCESS, RESERVATIONS & QUEUES

From (7.4) it follows that the pgf of X is given by

X(z) =
A(z)

∑s−1
k=0 xk(zs − zk)

zs − A(z)
; (7.5)

see (6.7) for the pgf of the stationary queue length in the discrete bulk service
queue. In this expression there are still s unknowns x0, . . . , xs−1, which can
be found using the classical approach discussed in Sect. 6.2 of this monograph.
In Theorem 6.1 it has been proven that zs = A(z) has s roots on or within the
unit circle. Since a pgf is analytic and well-defined in |z| ≤ 1, the numerator
of X(z) should vanish at each of the roots. This gives s equations. One of
the roots equals 1, and leads to a trivial equation. However, the normalisation
condition X(1) = 1 provides an additional equation. Using l’Hôpital’s rule,
this condition is found to be

s − μA =
s−1∑
k=0

xk(s − k), (7.6)

which equates two expressions for the mean number of unused data slots per
frame. In case some of the roots have a multiplicity larger than one, still
a set of linear equations can be constructed that yields the unique solution
x0, x1, . . . , xs−1, see Remark 6.1 on p. 122.

Explicit expressions for the moments of the queue length can be obtained
by taking derivatives of X(z). For example, evaluating the first derivative of
X(z) at z = 1 yields

E(X) =
σ2

A

2(s − μA)
+

s + μA

2
−

s−1∑
k=0

xk(s − k)2

2(s − μA)
. (7.7)

So far we looked at the queue length at the beginning of a frame. We can
also model the behaviour of the queue length throughout a frame. Denote by
X[m], m = 1, 2, . . . , f , the steady-state queue length at the end of the mth slot
of a frame. The first c slots of a frame are request slots. This implies that the
pgf of X[m] is given by

X[m](z) = X(z)Y (z)m, m = 1, . . . , c. (7.8)

The remaining s slots are data slots, yielding (m = 1, 2, . . . , s)

E(zX[c+m] |X = k) =

{
A(z), k < m,

A(z)zk−m, k ≥ m.
(7.9)

Summing over all possible values of X then gives

X[c+m](z) = A(z)

(
m−1∑
k=0

xk +
1

zm

(
X(z) −

m−1∑
k=0

xkz
k

))
, m = 1, . . . , s.

(7.10)

Periodic Scheduling 147

The expectation of the stationary queue length throughout a frame then fol-
lows from evaluating the first derivative of (7.8) and (7.10) at z = 1. That is,
EX[m] = EX + mμY for m = 1, . . . , c, and

E(X[c+m]) = E(X) + μA − m +
m−1∑
k=0

xk(m − k), (7.11)

for m = 1, . . . , s. Observe that EX[f] equals EX due to the normalisation
condition (7.6).

7.3.2 Flexible Boundary Model

For the flexible boundary mechanism, unused data slots are turned into request
slots. So, within a frame, the c forced request slots are scheduled first, then the
data slots (if any), and finally the additional request slots (if any). The stability
condition (7.3) still applies and is equivalent to requiring c to be smaller than
f/(μY + 1).

With X̃n representing the queue length at the beginning of frame n,
{X̃n, n ∈ Z

+} constitutes a discrete-time Markov chain, with transitions gov-
erned by (7.2). Note that the following conditional expectation holds

E(zX̃n+1 |X̃n = k) =

{
Y (z)f−k, k < s,

zk−sA(z), k ≥ s.
(7.12)

Because in the flexible boundary model all slots are used, the mean number of
request slots per frame, denoted by c∗, is fixed and independent of c, i.e.

c∗ =
f

μY + 1
, (7.13)

as each request slot requires 1 + μY slots in total: The request slot itself and
μY slots for transmitting the packets.

Let X̃ denote a random variable distributed as the stationary queue length
distribution, with

x̃k = P(X̃ = k) = lim
n→∞P(X̃n = k), k = 0, 1, 2,

From (7.12), it follows that the pgf of X̃ is given by

X̃(z) =
A(z)

∑s−1
k=0 x̃k(zsY (z)s−k − zk)

zs − A(z)
. (7.14)

As in Sect. 7.3.1, the s roots of zs = A(z) on or within the unit circle can
be used to determine x̃0, . . . , x̃s−1. Using l’Hôpital’s rule, the normalisation

148 MULTIACCESS, RESERVATIONS & QUEUES

condition X̃(1) = 1 reads

s − μA =
s−1∑
k=0

x̃k(s − k)(μY + 1), (7.15)

which equates two expressions for the mean number of slots per frame that
are used for arrivals and departures of packets that arrived in other than the c
forced request slots.

The mean queue length in case of the flexible boundary model is given by

E(X̃) =
σ2

A

2(s − μA)
+

σ2
Y

2(μY + 1)
+

s + μA

2

−(1 − μY)
s−1∑
k=0

x̃k(s − k)2(1 + μY)
2(s − μA)

. (7.16)

Using the same notation as for the fixed boundary model, the behaviour of
the queue length throughout a frame follows from

X̃[m](z) = X̃(z)Y (z)m, m = 1, . . . , c, (7.17)

and, for m = 1, 2, . . . , s,

E(zX̃[c+m] |X̃ = k) =

{
Y (z)c+m−k, k < m,

A(z)zk−m, k ≥ m,
(7.18)

and consequently, for m = 1, 2, . . . , s,

X̃[c+m](z) = A(z)
(m−1∑

k=0

x̃kY (z)m−k +
1

zm
(X̃(z) −

m−1∑
k=0

x̃kz
k)
)
. (7.19)

Hence,

E(X̃[m]) =

⎧⎪⎨⎪⎩
E(X̃) + mμY , m = 1, . . . , c,

(1 + μY)
∑m−c−1

k=0 x̃k(m − c − k)
+ cμY + E(X̃) − m + c, m = c + 1, . . . , f .

(7.20)
Observe that EX̃[f] equals EX̃ due to the normalisation condition (7.15).

Example 7.1 Consider a frame length of 18 slots, and Y distributed accord-
ing to a Poisson or geometric distribution

P(Y = k) = e−λ λk

k!
; P(Y = k) = (1 − p)pk, k = 0, 1, . . . ,

Periodic Scheduling 149

0 2 4 6 8
9

10

11

12

13

14
Poisson
geometric

Fig. 7.1. EX̃ for f = 18, μY = 1 for Poisson and geometric distribution, and c = 0, 1, . . . , 8

0 2 4 6 8
10

15

20

25

30

35

40

45

50

Poisson
geometric

Fig. 7.2. σ2
X̃

for f = 18, μY = 1 for Poisson and geometric distribution, and c = 0, 1, . . . , 8

both with mean 1 (λ = 1, p = 1/2). The mean and variance of X̃ that corre-
spond to these distributions are shown in Figs. 7.1 and 7.2 for increasing c.

In terms of the mean queue length, having forced request slots at the be-
ginning of the frame is disadvantageous. However, the variance of the queue
length is reduced by increasing c, except for high values of c.

Remark 7.1 In Jacquet et al. [85] a scheduling strategy called implicit fram-
ing is studied. For this strategy, no frame structure is used and priority is given
to data slots. Periods of consecutive request slots are implicitly closed by the
first data packet to be transmitted. When all data packets have been transmitted,
a new period of consecutive request slots, in which reservation takes place, is

150 MULTIACCESS, RESERVATIONS & QUEUES

restarted. Note that such an implicit framing strategy yields in fact the flexible
boundary model with f = 1 and c = 0. Jacquet et al. [85] demonstrate that
within the framework of the flexible boundary model, implicit framing min-
imises the average delay. In the case of implicit framing, the pgf of X̃ reduces
to

X̃(z) =
x̃0(zY (z) − 1)

z − 1
=

1 − zY (z)
(1 − z)(μY + 1)

, (7.21)

where x̃0 equals 1/(μY + 1) according to the normalisation condition (7.15).
Note that X̃ can be interpreted as the residual lifetime of the random variable
Y + 1. To see this, divide the time axis in cycles of one request slot plus the
number of transmission slots Y granted during that request slot. The residual
lifetime is an arbitrary point in a cycle, and since in every slot during this cycle
exactly one packet is transmitted, the residual lifetime equals the queue length.
We stress, though, that implicit framing is less useful to model the data queue
in cable networks, because the transmission delay prevents that a request made
by a station in slot s is granted in slot s + 1.

7.4 Packet Delay

In deriving the packet delay distribution, the periodic scheduling causes some
difficulties, as shown next. We first present a basic result that holds for both
the fixed and flexible boundary model, after which we complete the analysis
for both models separately.

Assume that the packets are transmitted in order of arrival. Tag an arbitrary
packet, and let the random variable T denote the slot within the frame in which
this packet arrives, T ∈ {1, 2, . . . , f}. Assume that the packet arrives during
slot m, i.e. T = m. Introduce U[m] as the number of packets present at the end
of the frame that contribute to the tagged packet’s delay. Then U[m] consists of
the queue length at the end of the frame that was already present at the end of
the previous frame, the packets that arrive in the same frame in request slots
before T , plus the packets that arrive within the same request slot but before the
tagged packet. We then express U[m] in terms of two integer random variables
F[m] and R[m]

U[m] = sF[m] + R[m], F[m] ≥ 0, 0 ≤ R[m] ≤ s − 1, (7.22)

where F[m] denotes the number of complete frames included in the tagged
packet’s delay, and R[m] the number of packets that will be transmitted during
the same frame as the tagged packet, but before it. Introduce D[m] as the ran-
dom variable representing the delay of a packet that arrives during arrival slot
m, defined as

D[m] = f − m + fF[m] + c + R[m] + 1. (7.23)

Periodic Scheduling 151

That is, f − m slots until the beginning of the next frame, F[m] frames, c
forced request slots, R[m] slots within the frame of transmission, and the actual
transmission slot of the tagged packet. The pgf of D[m] then reads

D[m](z) =
∞∑
i=0

P(D[m] = i)zi

= zf−m+c+1
∞∑

j=0

s−1∑
k=0

P(F[m] = j, R[m] = k)zfj+k

= zf−m+c+1
∞∑

j=0

s−1∑
k=0

P(U[m] = sj + k)zfj+k. (7.24)

From (7.24) it follows that

D[m](z
s) = zs(f−m+c+1)

s−1∑
k=0

zskϑmk(z), (7.25)

where the functions ϑmk(z) are defined as

ϑmk(z) =
∞∑

j=0

zsfj
P(U[m] = sj + k). (7.26)

The problem now is that (7.26) cannot be formulated directly in terms of the
pgf of U[m]. To achieve this, we use a basic approach that can be found in, e.g.
Bruneel and Kim [28] or Kang and Steyaert [92].

7.4.1 Basic Approach

Substituting l = sj + k in (7.26) yields

ϑmk(z) =
∞∑
l=0

z(l−k)f
P(U[m] = l)

∞∑
j=−∞

δ(l − sj − k), (7.27)

with δ(n) the Kronecker delta function, which equals 1 for n = 0 and 0 for all
other n. Now invoke the following property

Property 7.1 For any two integers k and s,

1
s

s−1∑
t=0

atk =
∞∑

j=−∞
δ(k − js),

where a = exp(2πi/s), i =
√−1.

152 MULTIACCESS, RESERVATIONS & QUEUES

Using Property 7.1 we obtain

ϑmk(z) =
∞∑
l=0

z(l−k)f
P(U[m] = l)

1
s

s−1∑
t=0

at(l−k)

=
z−kf

s

s−1∑
t=0

a−tk
∞∑
l=0

P(U[m] = l)zflatl

=
z−kf

s

s−1∑
t=0

a−tkU[m](a
tzf). (7.28)

Substituting (7.28) into (7.25) yields

D[m](z
s) = zs(f−m+c+1)

s−1∑
k=0

zsk z−kf

s

s−1∑
t=0

a−tkU[m](a
tzf)

=
zs(f−m+c+1)

s

s−1∑
t=0

U[m](a
tzf)

s−1∑
k=0

(z−ca−t)k

=
zs(f−m+c+1)

s

s−1∑
t=0

U[m](a
tzf)

1 − (z−ca−t)s

1 − z−ca−t
. (7.29)

Expression (7.29) gives an explicit formula for the pgf of the packet delay once
the pgf of U[m] is known. This leaves us to specify the latter, for which we give
separate derivations for the fixed and flexible boundary models.

7.4.2 Packet Delay in Fixed Boundary Model

Let D denote the packet delay for an arbitrary packet. Let Z0 denote the num-
ber of packets at the end of a frame that were already present the frame before,
and Z1 the number of packets within the tagged packet’s arrival slot arriving
before it. The pgf’s of Z0 and Z1 are given by

Z0(z) =
1
zs

(
X(z) +

s−1∑
k=0

xk(zs − zk)

)
, (7.30)

and

Z1(z) =
1 − Y (z)
(1 − z)μY

. (7.31)

The pgf of U[m] is then simply given by

U[m](z) = Z0(z)Y (z)m−1Z1(z), m = 1, . . . , c. (7.32)

Periodic Scheduling 153

Since P(T = m) = 1/c for m = 1, . . . , c, we have that

D(zs) =
1
c

c∑
m=1

D[m](z
s), (7.33)

which, combined with (7.29) and (7.32), yields the following result:

Theorem 7.1 The pgf of the stationary packet delay in the fixed boundary
model (7.1) is given by

D(zs) =
1
sc

s−1∑
t=0

1 − (atzc)−s

1 − (atzc)−1

{
zs(f+1)Z0(atzf)Z1(atzf)

zsc − A(atzf)
zs − Y (atzf)

}
,

(7.34)

where a = exp(2πi/s), i =
√−1, and Z0(z) and Z1(z) as given in (7.30) and

(7.31).

The mean packet delay follows from

E(D) =
[
1
s

d
dz

D(zs)
]

z=1

, (7.35)

which gives after tedious but straightforward calculations

E(D) = f +
fσ2

A

2μA(s − μA)
+

1 + μY

μY

(
s

2
−

s−1∑
k=0

xk(s − k)2

2(s − μA)

)
. (7.36)

Remark 7.2 Alternatively, the mean delay can be derived using Little’s law.
The queue length at the beginning of an arbitrary slot is given by

1
f

f∑
m=1

E(X[m]), (7.37)

where E(X[m]) is given by (7.11). The average arrival rate of packets per slot
equals cμY /f . Dividing (7.37) by this rate then yields (7.36).

7.4.3 Packet Delay in Flexible Boundary Model

For the flexible boundary model, the derivation of Ũ[m](z) is somewhat more
involved, since all slots within a frame are potential request slots. We first con-
sider the case that c ≥ 1, while c = 0 is covered at the end of this section. Dis-
tinguish two events: (a) the tagged packet arrives in one of the forced request
slots, and (b) the tagged packet arrives in one of the additional request slots.

154 MULTIACCESS, RESERVATIONS & QUEUES

Event (a) provides no extra information about the queue length at the beginning
of a frame, since the c forced request slots are scheduled every frame. Thus

Ũ[m](z) = Z̃0(z)Y (z)m−1Z1(z), m = 1, . . . , c, (7.38)

where

Z̃0(z) =
1
zs

(
X̃(z) +

s−1∑
k=0

x̃k(zs − zk)

)
. (7.39)

Event (b) does provide extra information about the queue length at the begin-
ning of the frame. We know that Z̃0 equals zero, otherwise there would be no
extra request slots. Further, consider the case that the tagged packet arrives in
slot c + 1. This implies that X̃ equals zero. Hence, Ũ[c+1] = A + Z1. Now
consider the packet arriving in slot c + 2. This implies that X̃ equals either
zero or one. In the first case it holds that Ũ[c+2] = A+Y +Z1, and in the latter
case Ũ[c+2] = A + Z1. Similar reasoning leads to the following expression

Ũ[m](z) = A(z)Z1(z)
∑m−c−1

k=0 x̃kY (z)m−c−1−k∑m−c−1
k=0 x̃k

, m = c + 1, . . . , f.

(7.40)
Finally, the distribution of T can be determined as follows. Remember that the
extra request slots are scheduled at the end of a frame. If a packet arrives in slot
m ∈ {c+1, . . . , f} of a frame, this particular frame has at least f −m+ c+1
request slots, and thus at most a queue length of m − c − 1 packets at the
beginning of the frame. This gives (recall that c∗ is the mean number of request
slots per frame)

P(T = m) =

{
1
c∗ , m = 1, . . . , c,
1
c∗
∑m−c−1

k=0 x̃k, m = c + 1, . . . , f .
(7.41)

Combining (7.29), (7.38) and (7.40), and conditioning on the request slot dis-
tribution given by (7.41) yields an explicit expression for the pgf of the packet
delay. We have

D̃(zs) =
f∑

m=1

P(T = m)D̃[m](z
s),

=
c∑

m=1

1
c∗

D̃[m](z
s) +

f∑
m=c+1

1
c∗

m−c−1∑
k=0

x̃kD̃[m](z
s), (7.42)

where D̃[m](zs) is defined as D[m](zs) in (7.29), except with U[m](atzf)
replaced by Ũ[m](atzf). This gives the following result:

Periodic Scheduling 155

Theorem 7.2 The pgf of the stationary packet delay in the flexible boundary
model (7.2) is given by

D̃(zs) =
1

sc∗

s−1∑
t=0

1 − (atzc)−s

1 − (atzc)−1

[
zs(f+1)Z̃0(atzf)Z1(atzf)

zsc − A(atzf)
zs − Y (atzf)

+ zs(c+1)A(atzf)Z1(atzf)
∑s−1

k=0 x̃k[zs(s−k) − Y (atzf)s−k]
zs − Y (atzf)

]
,

(7.43)

where a = exp(2πi/s), i =
√−1, and Z̃0(z) and Z1(z) are given in (7.39)

and (7.31).

From (7.42), it follows that

E(D̃) =
μY + 1

μY

[
E(X̃) +

(s + 1)μA − s2

2f
+

s−1∑
k=0

x̃k(s − k)2(1 + μY)
2f

]
.

(7.44)

As in case of the fixed boundary model (see Remark 7.2), an alternative deriva-
tion of ED̃ follows from applying Little’s law.

In case c = 0, the basic approach as described in Sect. 7.4.1 is not needed.
It is then straightforward to derive that

Ũ[m](z) = Z1(z)
∑m−1

k=0 x̃kY (z)m−1−k∑m−1
k=0 x̃k

; P(T̃ = m) =
1
c∗

m−1∑
k=0

x̃k,

and that the pgf of the packet delay is given by

D̃0(z) =
Z1(z)
fc∗

f∑
m=1

zf−m+1
m−1∑
k=0

x̃kY (z)m−1−k. (7.45)

Example 7.2 The distribution of the packet delay has a typical form. For
f = 9, Y geometrically distributed with mean 1, Fig. 7.3 displays the packet
delay distribution for c = 0, 2, 4, where we have used the method described
in Appendix 6.B. First note that the minimum delay corresponds to a packet
that arrives in the last slot of a frame and is immediately transmitted in the slot
c+1 of the next frame. The oscillating effect is due to the frame structure, and
becomes stronger for higher values of c.

156 MULTIACCESS, RESERVATIONS & QUEUES

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
c=0
c=2
c=4

Fig. 7.3. P(D̃ = k) for f = 9, c = 0, 2, 4, and Y geometrically distributed with mean 1

7.5 Numerical Results

In this section we first present a numerical comparison between the fixed and
flexible boundary models. Next, for the flexible boundary model, we inves-
tigate the impact of different values of c on various queue length and delay
characteristics.

7.5.1 Fixed vs. Flexible Boundary Model

We assume that the load, defined as the mean number of packets arriving per
frame, is the same for the fixed and flexible boundary models, being cμY and
c∗μY = fμY /(1 + μY), respectively. Thus, for a fair comparison, we choose
the appropriate values of μY for which the load is the same for both models.
For convenience, we further assume that Y is Poisson distributed.

Figures 7.4 and 7.5 display the mean and variance of the packet delay for
f = 9, c = 2 and various load values. For a load of 2, μY = 1 for the fixed
boundary model and μY = 2/7 (c∗ = 7, c∗μY = 2) for the flexible boundary
model. In terms of the mean packet delay, the flexible boundary model clearly
outperforms its fixed counterpart.

For the flexible boundary model, a low load yields relatively many unused
data slots that are used as additional request slots. The variation in request slots
per frame inherent to such type of scheduling then causes a higher packet delay
variance than in the fixed boundary model.

Periodic Scheduling 157

0.5 2.5 4.5 6.5
6

8

10

12

14

16

18

20

22
fixed boundary model
flexible boundary model

load

Fig. 7.4. Mean packet delay, fixed vs. flexible boundary model, f = 9, c = 2, Y Poisson
distributed

0.5 2.5 4.5 6.5
0

10

20

30

40

50

60

70
fixed boundary model
flexible boundary model

load

Fig. 7.5. Packet delay variance, fixed vs. flexible boundary model, f = 9, c = 2, Y Poisson
distributed

7.5.2 Influence of c in Flexible Boundary Model

We now investigate the impact of different values of c for the flexible bound-
ary model on various queue length and delay characteristics. Table 7.1 contains
queue length characteristics for f = 9, c = 0, 2, 4, and Y is Poisson or geo-
metrically distributed with mean 1. Table 7.2 contains delay characteristics for
the same settings.

As we have seen in Example 7.1, increasing c is disadvantageous in terms of
the mean queue length, while the variance of the queue length is often reduced

158 MULTIACCESS, RESERVATIONS & QUEUES

Table 7.1. Characteristics of the queue length for f = 9 and μY = 1

EX̃ VarX̃ P(X̃ > 10) P(X̃ > 20) P(X̃ > 50)

Poisson c = 0 4.75 11.75 0.0639 0.0003 0.0000
c = 2 4.95 7.97 0.0408 0.0001 0.0000
c = 4 6.75 10.93 0.1245 0.0019 0.0002

Geometric c = 0 5.00 16.67 0.1042 0.0026 0.0001
c = 2 5.40 14.07 0.0995 0.0020 0.0000
c = 4 9.00 34.63 0.3197 0.0471 0.0064

Table 7.2. Characteristics of the packet delay for f = 9 and μY = 1

ED̃ VarD̃ P(D̃ > 10) P(D̃ > 20) P(D̃ > 30)

Poisson c = 0 6.92 7.60 0.0926 0.0020 0.0000
c = 2 8.57 8.82 0.5437 0.0039 0.0001
c = 4 13.66 32.03 0.9550 0.2800 0.0327

Geometric c = 0 7.63 11.84 0.1767 0.0028 0.0003
c = 2 11.46 17.10 0.6075 0.0353 0.0014
c = 4 21.40 96.86 0.9568 0.4855 0.1812

due to the stabilising effect on the arrival process. The same can be seen from
the results in Table 7.1. Increasing c reduces the flexibility of the system, which
is the reason that both the mean and variance of the queue length increase when
c gets large, c = 4 in this example.

The mean and variance provide only partial information on the underlying
distribution function. We therefore consider some tail probabilities. Note that
in Table 7.1, the probability that X̃ gets larger than 10 is the smallest for c = 2,
for both the Poisson and geometric distribution. Depending on the relevant
performance characteristic, one can determine the optimal value of c.

For the delay characteristics in Table 7.2 we do not see a stabilising effect.
This is mainly due to a convention in our model that packets cannot be sched-
uled until the next frame. Because of this convention, our definition of delay
includes the time between the request slot and the beginning of the next frame.
In this way small values of c are favoured: In this case there are few scheduled
request slots and many additional request slots. These additional request slots
are located near the end of a frame and bring along a smaller delay until the
beginning of the next frame than the scheduled request slots that are located at
the beginning of a frame.

7.6 Conclusion

We have presented time-slotted queueing models that describe the frame-
based scheduling of request and data slots. The fixed boundary model uses a
fixed number of request slots per frame, whereas the flexible boundary model

Periodic Scheduling 159

designates in addition the unused, due to lack of data packets, data slots as
request slots. For both models we presented the pgf of the stationary queue
length and the packet delay. For deriving the pgf of the packet delay we used
a technique specifically designed to deal with the periodic scheduling. In Van
Leeuwaarden [110] this technique has been applied to derive the delay distrib-
ution of vehicles in the fixed-cycle traffic-light queue.

For the flexible boundary model we use an optimistic scenario, in the sense
that the packets that arrive in the additional request slots can all be transmitted
at the beginning of the next frame. If this is not the case, the delayed flexi-
ble model, which is the topic of Chap. 8, is more appropriate. The impact of
the number of forced request slots, c, on the performance characteristics has
been briefly touched upon. This issue will be pursued in much greater depth in
Chap. 8.

Chapter 8

RESERVATIONS WITH TRANSMISSION DELAYS

Reservation procedures are often used on communication channels that are
characterised by large round-trip times. As a consequence, a successful reser-
vation must be separated in time from the corresponding data transmission. We
propose a queueing model for this situation. Moreover, we investigate schedul-
ing strategies: Strategies to divide the bandwidth between the request process
and the data-transmission process. In particular, we consider ‘static’ schedul-
ing and ‘adaptive’ scheduling.

The static scheduling strategy leads us to formulate a model which is an
extension of the bulk service queueing models considered in Chaps. 6 and 7.
Its stationary distribution can be obtained by means of classical techniques,
but this relies heavily on numerical methods. However, combining a method
of Kingman, bounding techniques, and a heuristic argument, we are able to
derive approximating bounds for the mean queue length. The bounds are com-
plemented by simulations to deduce an interesting non-monotonicity property
of the mean queue length in this model. This result also suggests how to adapt
the two scheduling strategies. Additionally, we compare the two strategies and
show that they can be used to improve the organisation of the reservation
process.

8.1 Introduction

In Chap. 7, we introduced the fixed and the flexible boundary models as queue-
ing models for reservation procedures. However, the large round-trip times,
that are often inherent to the communication channel, may complicate the or-
ganisation of the reservation procedure. This typically happens in cable net-
works, as extensively reviewed in Sect. 1.3.

As discussed in Sect. 2.3, this also hampers the applicability of both the fixed
and flexible boundary model. To amend this situation, we are led to consider

162 MULTIACCESS, RESERVATIONS & QUEUES

the following recursion for the data queue:

Xn+1 = (Xn − f + cn)+ +
cn−d∑
i=1

Yn−d,i, (8.1)

with x+ := max(0, x) and

Yni i.i.d., Yni
d= Y. (8.2)

In (8.1), Xn denotes the size of the data queue at the start of frame n and
cn ≤ f is the number of request slots in frame n, so that f − cn slots can be
used to serve the data queue. The actual data transmissions can be scheduled
d + 1 frames after the successful request. The recursion with d = 1 or d = 2
is relevant for cable networks. The Yni describe the request sizes: Yni = 0 if
the request was not successful and Yni equals the request size otherwise. Their
assumed independence can be defended on the basis of the properties of the
request process.

The recursion (8.1) is incomplete, as it does not fix the properties of the cn.
As cn is the number of request slots in frame n, specification of cn requires
a scheduling policy to divide the bandwidth between the request and the
data-transmission processes. This policy should be based on what is currently
known to the scheduler: The data-queue sizes {Xl : l ≤ n} and the recent
history of the scheduling process {cl, l ≤ n − 1}. Of course, one expects the
current size of the data queue, Xn, and the recent history of the scheduling
process, {cl, n − d ≤ l ≤ n − 1}, to be sufficient for an optimal policy. Ad-
ditionally, we require that cn ≥ f − Xn so that it is guaranteed that slots are
always used for either requests or data transmissions, i.e. no slots are unused.

Below we consider the scheduling in more detail. Note that there are, under
the scheduling constraints, on average f/(1 + E(Y)) request slots per frame:
As one slot is used for the request itself and E(Y) slots are needed, on average,
for the corresponding data transmission. Hence the average traffic intensity
equals Λ := fE(Y)/(1+E(Y)) packets per frame for each scheduling strategy
satisfying our constraints.

8.1.1 Static and Adaptive Scheduling

The cn in (8.1) can be interpreted as the amount of bandwidth for the requests:
In each frame there are cn ≤ f time slots used for requests. The remaining
slots are used for data transmission and let the data queue decrease by f − cn.

As in the no delay case considered in Chap. 7, there are two, unfortunately
conflicting, heuristics that guide a judicious scheduling policy. On the one
hand, setting cn = (f − Xn)+ implements a greedy schedule. Indeed, this
schedule gives priority to data transmissions and schedules request slots only

Reservations with Transmission Delays 163

in case there is no more data to transmit. This empties the data queue as quickly
as possible. On the other hand, setting cn larger guarantees some bandwidth to
the request process, which smoothens the arrival process.

In choosing the right policy for cn, one should strike the proper balance
between these two considerations. Not surprisingly, the choice of policy for
cn has received quite some attention in the literature, see [73, 74, 78, 150],
as reviewed in Sect. 1.4. The scheduling policies proposed in these references
were motivated by ad-hoc arguments and their evaluation was by means of
simulation.

A common strategy to guarantee bandwidth for the requests is to choose

cn = c + (f − c − Xn)+, (8.3)

which guarantees c slots per frame to the request process, and gives priority
to data transmissions in the remainder of the time slots. It constitutes a nat-
ural generalisation of the greedy policy, which sets c to zero, and leads to the
recursion

Xn+1 = (Xn − f + c)+ +
c+(f−c−Xn−d)+∑

i=1

Yn−d,i. (8.4)

The queueing model defined via (8.4) is referred to as the delayed bulk service
queue. It is named the acquisition queue in [53], and generalises the models
considered in Chap. 7. The specification of a scheduling policy now boils down
to an appropriate choice for c. It is one of the goals of this chapter to get a better
understanding of this scheduling policy through a mathematical analysis. In the
remainder, we call this scheduling policy the static policy as it does not adapt
the choice of the cn to the recent history of the scheduling process.

We also consider a class of adaptive scheduling strategies in which cn can
be chosen in each frame, depending on the recent history of both data queue
and scheduling process. We derive an efficient scheduling strategy for choosing
the value cn based on the queue length at the beginning of the frame and the
number of request slots scheduled in the previous d frames.

8.1.2 Outline of this Chapter

In Sect. 8.2, we consider the delayed bulk service queue defined in (8.4). The
case with d = 0 is considered in Chap. 7 and can be solved by means of clas-
sical techniques: In this case, the recursion defines a one-dimensional Markov
chain, and the probability generating function of the stationary distribution of
the data-queue length can be obtained. For d ≥ 1, the recursion defines a
d + 1-dimensional Markov chain. Remarkably, the approach from Chap. 7 can
be adapted, and the pgf of the stationary distribution of the queue size can be

164 MULTIACCESS, RESERVATIONS & QUEUES

expressed in terms of the roots of some equation. This is shown in
Appendix 8.B. This appendix is an excerpt from Denteneer et al. [53], to which
we refer for more details and examples.

However, this solution relies heavily on numerical methods and does not
provide direct insight, nor does it readily lead to scheduling algorithms. There-
fore, we will concentrate on an analysis of (8.4) partly based on heuristic argu-
ments. In particular, we derive approximating bounds for the mean data-queue
length under the stationary distribution. In Sect. 8.2.2, we exploit a method of
Kingman [95] to express the mean queue length in terms of moments of the
arrival distribution, a term related to the idle time, and a correlation term. We
further present bounds for the term related to the idle time, using methods from
Denteneer et al. [50]. These rigorous results are complemented, in Sect. 8.2.2,
with a heuristic derivation to approximate the correlation term. The bounds
and the approximation together yield approximations for the mean stationary
queue length.

The approximation suggests a remarkable non-monotonicity property of the
delayed bulk service queue: The mean queue length is not monotonically in-
creasing in the average traffic intensity. This property is verified by simulation
in Sect. 8.2.3, where we also verify the accuracy of the approximation.

Then we turn to scheduling. In Sect. 8.3, we first consider (8.4) and sta-
tic scheduling. Then we turn to (8.1) and adaptive scheduling, for which we
utilise the analysis of the delayed bulk service queue in the following way. The
analysis reveals that the non-monotonicity of the delayed bulk service queue is
due to the autocorrelation of the arrival process: Increasing the traffic intensity
decorrelates the arrival process and this causes the expected queue length to
decrease. This phenomenon points out an adaptive schedule to choose cn. In
Sect. 8.4, the two schedules are compared by means of simulation. We end this
chapter with a summary and some conclusions.

8.2 The Delayed Bulk Service Queue

We consider the delayed bulk service queue, defined via (8.4). Sections 8.2.1
and 8.2.2 are devoted to an analysis of the mean stationary queue length. In
Sect. 8.2.3 we study the non-monotonicity property.

8.2.1 Analysis

We denote the mean and variance of the random variable Y by μY (or EY)
and σ2

Y . We use the shorthand s := f − c. In the sequel, we assume that
cμY < f −c, so that the Markov Chain, defined via Recursion (8.4) is ergodic,
see Lemma 8-8.B.1 in Appendix 8.B. There we will also describe a method to
derive the stationary distribution of (8.4).

Reservations with Transmission Delays 165

To get direct insight in the mean queue length for general d ≥ 0, we apply
a method used by Kingman [95]. This method is based on the manipulation of

Mn = (s − Xn)+, Pn = (Xn − s)+. (8.5)

For these variables, the following obvious relations hold:

Xn − s = Pn − Mn, (Xn − s)2 = P 2
n + M2

n. (8.6)

We will use Xd to denote a random variable distributed according to the
stationary distribution of the queue length process as defined by (8.4), and Md

to denote a random variable that follows the same distribution as (s − Xd)+.
We then have that

Theorem 8.1 The mean queue length in the delayed bulk service queue with
delay parameter d is given by

E(Xd) =
cσ2

Y

2(s − cμY)
+

σ2
Y

2(1 + μY)
+

s + cμY

2

+E((Md)2)
μ2

Y − 1
2(s − cμY)

+ E(Rd)
μY

s − cμY
, (8.7)

where
E(Rd) = lim

n→∞E(PnMn−d). (8.8)

Proof See Appendix 8.A. �

Expression (8.7) for E(Xd) contains two unknown terms: A term E((Md)2)
related to the idle time and a correlation term E(Rd). Now

E((Md)2) =
s−1∑
j=0

P(Xd = j)(s − j)2 (8.9)

can be satisfactorily bounded in the following way. Since⎛⎝s−1∑
j=0

P(Xd = j)(s − j)

⎞⎠2

≤
s−1∑
j=0

P(Xd = j)(s − j)2 ≤ s

s−1∑
j=0

P(Xd = j)(s − j),

(8.10)
and

s−1∑
j=0

P(Xd = j)(s − j) =
s − cμY

1 + μY
, (8.11)

we have (s − cμY

1 + μY

)2 ≤ E((Md)2) ≤ s
s − cμY

1 + μY
. (8.12)

These bounds, and some further improvements, have been presented in [50].

166 MULTIACCESS, RESERVATIONS & QUEUES

In case d = 0, we obviously have that Rd = 0. Then, combining (8.7)
with (8.12) yields bounds for the mean queue length. The bounds are sharp
for the heavy-traffic case in which cμY → s. They have an advantage over
exact procedures to calculate E(X0) in that they depend on the distribution
of Y only via the first two moments. Hence, these bounds are appropriate for
usage in case the traffic model is only partly specified; see [51] for an exam-
ple. Moreover, they are simple explicit expressions and readily amenable to
back-of-the-envelope calculations, and this can give an advantage over exact
procedures that usually involve numerical calculations. For d ≥ 1, no simple
bounds on the correlation term are known; see [53] for an exact, but involved,
expression. Instead, we derive an approximation for E(Rd) in the next section.

8.2.2 An Approximation for the Correlation Term

In this section we use a heuristic argument to construct an approximation
for E(Rd), which, together with the bounds (8.12), yields approximations for
E(Xd). The argument is based on the inspection of the sample paths of various
realisations of the process defined by (8.4).

One such sample path is shown in Fig. 8.1, where d = 100, c = 0, and Y
geometrically distributed with μY = 1.25. The figure shows the evolution of
the queue length at frame boundaries after a long initial warm-up period. The

3.8 3.85 3.9 3.95 4

x 104

0

100

200

300

400

500

600

700

Fig. 8.1. Sample path of the process defined by (8.4), for f = 18, d = 100, c = 0, and
Y geometrically distributed with μY = 1.25. The sample path comes from a simulation that
started with an empty queue, and the results are displayed for frame 38,000 until frame 40,000

Reservations with Transmission Delays 167

xn

d+1 d+1 d+1 d+1L∗ L∗ n

slope: cμY)f(μY s

cμY

slope: cμY s– – –

Fig. 8.2. Deterministic approximation xn of a sample path of (8.4) for μY > 1

sample path has settled on a cyclic pattern. Each cycle can be subdivided into
three distinct parts, as illustrated in Fig. 8.2. First, there is an interval of length
d+1, in which the queue length equals 0. In the second interval, also of length
d + 1, the queue length increases. Finally, in the third interval (the length of
this interval is specified below), the data-queue length is drained until it hits
zero, upon which a new cycle starts.

We conjecture that this is the typical behaviour of the sample paths in case
μY > 1 and d > 0, irrespective of the actual distribution of Y . This con-
jecture suggests that we can construct a deterministic approximation of the
sample path. Our heuristic approximation of E(Rd) is then obtained by eval-
uating E(Rd) for this deterministic approximation. More formally, we define
the deterministic process xn via (8.4) with Yni replaced by its expected value
(see Fig. 8.2):

xn+1 = (xn − f + c)+ +
c+(f−c−xn−d)+∑

i=1

μY . (8.13)

Given initial values x1 = · · · = xd+1 = cμY , it is easy to see that (8.13)
yields for j = 1, . . . , d + 1

xd+1+j = j(f − cμY)μY − (j − 1)(f − c),

because in this period those packets join the data queue that were generated in
the f − cμY request slots d + 1 frames earlier, while packets are transmitted
from the queue at maximum rate f − c packets per frame. At the end of this
period, the queue has built up to the level (d + 1)(f − cμY)μY − d(f − c),
after which the queue is drained at rate (f − c) − cμY . This yields

x2(d+1)+j = (d + 1)(f − cμY)μY − (d + j)(f − c) + jcμY ,

168 MULTIACCESS, RESERVATIONS & QUEUES

for j = 1, . . . , L∗. Here L∗ is the smallest value l for which x2(d+1)+l hits
cμY . Consequently, L∗ can be calculated from x2(d+1)+L∗ = cμY , i.e.

L∗ =
(d + 1)(f − cμY)μY − d(f − c)

f − c − cμY
. (8.14)

After instant 2(d + 1) + L∗ − 1 the sequence repeats itself. Hence the cycle
length equals L = 2(d + 1) + L∗ − 1 = (d + 1)(μY + 1). We therefore
approximate E(Rd) as follows

E(Rd) ≈ lim
n→∞

1
T

T∑
n=1

(xn − s)−(xn+d − s)+

≈ 1
L

L∑
n=1

(xn − f + c)−(xn+d − f + c)+. (8.15)

where x− = −min(0, x). Now for μY > 1, we can approximate the second
sum in (8.14) by the terms n = 2, . . . , d + 1, so that

E(Rd) ≈ 1
L

d∑
j=1

(cμY − f + c)−

×(j(f − cμY)μY − (j − 1)(f − c) − f + c)+

=
1
L

1
2
d(d + 1)(f − c − cμY)((f − cμY)μY − f + c)+

=
1
2

d

μY + 1
(f − c − cμY)((f − cμY)μY − f + c)+. (8.16)

Substituting (8.16) into (8.7) yields the following approximation for E(Xd):

E(Xd) ≈ cσ2
Y

2(s − cμY)
+

σ2
Y

2(1 + μY)
+

s + cμY

2
+ E((Md)2)

μ2
Y − 1

2(s − cμY)

+
1
2
d

μY

μY + 1
((f − cμY)μY − f + c)+. (8.17)

The bounds in (8.12) for E((Md)2) can now be used to obtain explicit expres-
sions.

In order to assess the quality of the approximation we have carried out a
number of simulations. We consider Y to be distributed according to a Poisson
distribution; simulations with a geometric distribution showed similar results
and have been left out. The frame length has been set to f = 18, and we var-
ied the traffic intensity Λ, the transmission delay d, and the number of forced
request slots c. The mean queue length has been evaluated on an interval of
1,000,000 frames, after an initial warm-up period of 200,000 frames.

Reservations with Transmission Delays 169

6 8 10 12 14 16 18
0

50

100

150

d = 5

d = 100

d = 10

d = 1

Λ

Fig. 8.3. E(Xd) for Poisson Y , c = 0 and various values of d

6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

d = 100

d = 10

d = 5

d = 1

Λ

Fig. 8.4. E(Xd) for Poisson Y , c = 2 and various values of d

The performance curves obtained by simulation (solid lines) for c = 0 and
c = 2 are shown for for Poisson Y in Figs. 8.3 and 8.4. Additionally, the
approximating lower and upper bounds, obtained by substitution of (8.12) in

170 MULTIACCESS, RESERVATIONS & QUEUES

(8.17), are shown as dashed lines. These simulations lead us to conclude that
the approximations are excellent for c = 0.

There are some marked differences between the results displayed in Figs. 8.3
and 8.4. Most importantly, the approximation by (8.17) is less accurate in case
c = 2 than it is in case c = 0. This is so in particular for the higher traffic
intensities. Additionally, the approximating bounds are not actual bounds in
this case.

From these and many other examples we conclude that (8.17) is in general
sharp, but breaks down in heavy traffic conditions for c > 0. The latter is
because the deterministic approximation to the sample path is less convincing
for c > 0 and heavy traffic conditions.

8.2.3 A Non-Monotonicity Property

The approximation (8.17) suggests various interesting properties for E(Xd).
Firstly, we consider E(Xd) as a function of d. The approximation then suggests
that d has no impact on the mean queue length in case μY ≤ 1. However, in
case μY > 1, E(Xd) increases linearly with d. It follows in particular that the
correlation term E(Rd) is the dominating term in the expression for E(Xd)
and that E(Xd) grows without bounds for d tending to infinity.

This also suggests that the mean queue length is not necessarily monotonic
in the traffic intensity for d > 0 and c > 0. To see this, observe that the
approximation (8.16) of the correlation term E(Rd) is not monotonic in μY .
This follows easily as this approximation is nonnegative, and equals 0 both for
the low traffic intensities μY ≤ 1 and the maximum traffic intensity μY =
(f − c)/c. Now for large values of d, the correlation term will dominate the
expression for the mean queue length, which then is non-monotonic too.

In order to verify this non-monotonicity, we carried out a substantial num-
ber of simulations, for the the Poisson distribution, with c = 1 and the average
traffic intensity per frame close to the stability boundary Λ = 17. The result-
ing performance curves is presented in Fig. 8.5 along with the approximating
bounds based on (8.17). Similar simulations were carried out for the geometric
distribution. These simulations show convincingly that the non-monotonicity
is a real feature of the model and not a mere artifact of the approximations.
These figures also show that this effect can be very substantial.

This non-monotonicity can be explained informally as follows. Observe that
the input to the data queue consists of two sources: (Xn − s)+ and a sum
which increases in (s−Xn−d)+. As the traffic intensity approaches the stability
bound, the cyclic behaviour of the sample paths vanishes which decorrelates
the two input sources to the data queue. Hence, increasing the traffic intensity
causes the input to be less bursty, and this results in a smaller mean queue
length. Another way to see this is by observing that the bursts following periods

Reservations with Transmission Delays 171

15.5 16 16.5 17
500

1000

1500

2000

2500

3000

Λ

Fig. 8.5. E(Xd) for Poisson Y , c = 1 and d = 100. E(Xd) is not monotonous in the traffic
intensity

in which the system is, relatively, empty are caused by an inflow of magnitude
(f − c − cμY)μY + cμY = (f − cμY)μY . Now this latter expression is non-
monotonic in μY .

This non-monotonic behaviour, though remarkable, is not uncommon in
systems that involve control and feedback delay. Situations in which these char-
acteristics lead to unwanted oscillations and increased delay occur if the traffic
dynamics can be expressed via a difference equation or differential equation
that involves a delayed response, see, e.g. [65, 76, 91].

8.3 Adaptive Scheduling Strategies

In the previous section, we have analysed the delayed bulk service queue and
obtained an approximation (8.17) for the expected queue length. Moreover,
we have revealed a remarkable non-monotonicity property of the expected
queue length. Our results can be utilised in two ways to construct efficient
scheduling strategies to divide the bandwidth between the request and the data-
transmission phase.

Firstly, they aid in choosing the parameter c in the delayed bulk service
queue: By minimising (8.17) with respect to c we obtain a value for c, adapted
to the traffic intensity, which minimises the expected queue length. Of course,
this observation must be combined with a method to estimate the traffic
intensity in order to arrive at a practical scheduling algorithm. This approach
is referred to as static scheduling. The strategy is illustrated in Fig. 8.6, where

172 MULTIACCESS, RESERVATIONS & QUEUES

12 13 14 15 16 17
0

20

40

60

80

100

120

140

160

180

200

c = 1

c = 4 c = 3 c = 2

c = 0

Λ

Fig. 8.6. EXd for geometric arrivals and d = 3

it is shown that c can be chosen adaptively, depending on the traffic intensity,
to decrease the expected queue length.

Secondly, these results help in formulating a more general adaptive schedul-
ing strategy: The non-monotonicity was due to the autocorrelation, or bursti-
ness, of the arrival process, and improved, adaptive, scheduling strategies can
be constructed by controlling the autocorrelation. This is considered in more
detail below.

We have seen in Sects. 8.2.2 and 8.2.3 that the transmission delay results in a
cyclic behaviour and a strongly correlated arrival process. This might have se-
vere consequences for the mean queue length (see Expression (8.7)), since the
correlation term E(Rd) becomes dominant in high-load situations. One way to
smooth the arrival process is static scheduling as considered above. Here, we
consider an alternative method to reduce the correlation of the arrival process.
We will do this by introducing a scheduling strategy that does not only vary the
number of request slots per frame as a function of the queue length at the begin-
ning of the frame (as for static scheduling), but also allows for the number of
request slots in a frame to depend on the number of request slots scheduled in
the previous d frames. We have referred to this strategy as adaptive scheduling.

Denote by cn the number of request slots scheduled in frame n. The evolu-
tion equation of the queue length at frame boundaries then becomes (8.1). Let
us now recall where the cyclic behaviour observed in Sect. 8.2.2 comes from.
The arrival process is coupled to the queue length such that more packets arrive

Reservations with Transmission Delays 173

when the queue is small, and less packets arrive when the queue is long. This
type of control is expected to lead to a smoother distribution of the number
of arriving packets over time. However, the transmission delay upsets the bal-
ance. The impact of a corrective decision, like more arrivals if the system is
less busy, is only seen d frames later. If the system is busier d frames later, the
extra arrivals might have just the opposite effect. This phenomenon of control
decisions that have the opposite effect as one had in mind is precisely what is
captured by the correlation term:

E(Rd) = lim
n→∞E(PnMn−d)

= lim
n→∞

s−1∑
j=0

P(Mn−d = j)
∞∑

k=0

P(Pn = k|Mn−d = j)jk

= lim
n→∞

s−1∑
j=0

P(Xn−d = s − j)

×
∞∑

k=0

P(Xn = s + k|Xn−d = s − j)(s − j)(s + k).

(8.18)

So, E(Rd) might be viewed as a measure for the performance of a scheduling
strategy: A high value of E(Rd) indicates that the scheduling strategy balances
the input poorly, and ideally E(Rd) equals zero. Obviously, it holds that the
larger the transmission delay d, the less unlikely it is that the relatively simple
static scheduling balances the input well.

Our primary goal is to reduce the mean queue length by choosing an adap-
tive scheduling strategy that balances the input properly despite a substantial
delay. Denote by c∗ the mean number of request slots per frame, given by

c∗ =
f

1 + μY
. (8.19)

The mean number of arriving data packets per frame, denoted by Λ, is then
given by

Λ = c∗μY =
fμY

1 + μY
. (8.20)

In balancing the input, one would want Λ packets to arrive to the queue per
frame. This is not feasible, since we are dealing with a stochastic process, but
it might serve as a guiding principle. Say we are at the beginning of frame n.
What do we know about the number of arriving packets in the next d frames?
We have scheduled cn−d + cn−d+1 + · · · + cn−1 request slots in the previous

174 MULTIACCESS, RESERVATIONS & QUEUES

d frames and we are still free to choose cn, which makes that the number of
arriving packets in the next d frames is given by

d∑
k=1

cn−k∑
i=1

Yn−ki +
cn∑
i=1

Yni. (8.21)

Ideally, there will be f − cn packets at the beginning of each frame, so that in
each frame all waiting packets can be transmitted. In that case, we would have

Xn = f − cn;
d∑

k=1

cn−k∑
i=1

Yn−ki +
cn∑
i=1

Yni = (d + 1)Λ. (8.22)

In reality, this wil not be the case, but we will take these values as a benchmark.
So, we aim at choosing cn such that

Xn − (f − cn) +
d∑

k=1

cn−k∑
i=1

Yn−ki +
cn∑
i=1

Yni ≈ (d + 1)Λ. (8.23)

This benchmark provides a useful scheduling strategy when we replace the Yni

in (8.23) by their expectation μY . Some rewriting then gives the value c̄n as a
target level for cn, i.e.

c̄n =
1

1 + μY

[
f + (d + 1)Λ − Xn − μY

d∑
k=1

cn−k

]
= c∗ +

1
1 + μY

[
(d + 1)Λ − Xn − μY

d∑
k=1

cn−k

]
. (8.24)

To make sure that cn is integer-valued, and that all unused data slots are turned
into request slots, we then choose cn according to

cn = max(0, c̄n�, f − Xn). (8.25)

8.4 Numerical Assessment

In order to assess the merit of the two scheduling strategies, we have carried
out a number of simulations. As before, f = 18, and we vary Λ, d, and c. We
let Y follow a Poisson distribution. In all simulation results presented below,
the performance measures have been evaluated on an interval of 1,000,000
frames, after an initial warm-up period of 200,000 frames.

In our assessment, we investigate whether our scheduling strategies succeed
in reducing the autocorrelation. Additionally we compare the average queue
lengths under both static and adaptive scheduling.

Reservations with Transmission Delays 175

8.4.1 Impact on the Autocorrelation

The intention to reduce the autocorrelation of the arrival process was the cor-
ner stone of the adaptive scheduling strategy. Here, we investigate the extent to
which the strategy, implemented via (8.25) achieves this. Moreover, we com-
pare this with the autocorrelation achieved with a static scheduling strategy
with a given, fixed, value for c.

In Figs. 8.7, 8.9, and 8.11 we have plotted ERd for static and adaptive
scheduling, for Poisson arrivals and d = 1, 3, 25.

Note that adaptive scheduling very well achieves its aim and drives the au-
tocorrelation to zero, up to a given traffic intensity. The higher the transmission
delay becomes, the more (relatively) the correlation term is lowered by adap-
tive scheduling. For d = 25, the correlation term for adaptive scheduling is
almost negligible. This can be explained as follows. The adaptive scheduling
determines the appropriate number of request slots by estimating the number
of packets that will arrive in the future. Denote the total number of request
slots scheduled in the d previous frames by m. The estimated number of future
arrivals is then mμY . Hence, the larger d, the larger m, and the more precise
the estimation of the number of future arrivals will be.

8.4.2 Comparison

We now compare the performance of adaptive scheduling with the performance
of static scheduling, see Figs. 8.8, 8.10, and 8.12. The performance of the

9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120

adaptive

c = 4 c = 2

c = 3

c = 0

c = 1

Λ

Fig. 8.7. ERd, d = 1

176 MULTIACCESS, RESERVATIONS & QUEUES

9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120

140

160

180

200

adaptive

c = 3

c = 0

c = 4

c = 2

c = 1

Λ

Fig. 8.8. EXd, d = 1

9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

300

350

400

450

adaptive

c = 3

c = 4
c = 2

c = 1

c = 0

Λ

Fig. 8.9. ERd, d = 3

scheduling strategy with fixed c is indicated by various curves, labeled with
the corresponding c. Clearly, each of these curves has an asymptote at 18 − c,
as at most 18 − c data packets can be transported if c slots are guaranteed to
the request process.

Reservations with Transmission Delays 177

9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120

140

160

180

200

adaptive

c = 3

c = 4

c = 0

c = 1

c = 2

Λ

Fig. 8.10. EXd, d = 3

9 10 11 12 13 14 15 16 17 18
0

500

1000

1500

2000

2500

3000

3500

4000

adaptive

c = 0

c = 1

c = 2

c = 3

c = 4

Λ

Fig. 8.11. ERd, d = 25

First note that the best performance of static scheduling is given by the lower
envelope of the curves labeled with the c’s. As clearly visible, adaptive schedul-
ing performs better. Also, the difference with static scheduling tends to get big-
ger for increasing values of d, which can be largely attributed to the reduction

178 MULTIACCESS, RESERVATIONS & QUEUES

9 10 11 12 13 14 15 16 17 18
0

100

200

300

400

500

600

700

800

900

1000

adaptive

c = 3

c = 1

c = 2

c = 0

c = 4

Λ

Fig. 8.12. EXd, d = 25

in the autocorrelation as discussed in the previous subsection. So practically in
all cases the adaptive scheduling performs well, in the sense that it minimises
the mean queue length for almost all values of Λ. An exception is for Λ ranging
from 16.7 to 17 for d = 1. In this case, regular scheduling with c = 1 gives a
smaller mean queue length.

For increasing values of d, the relative performance of the adaptive schedul-
ing becomes better. The reason for this can be seen from the figures that display
the correlation term. The higher the transmission delay becomes, the more (rel-
atively) the correlation term is lowered by adaptive scheduling.

Figure 8.13 displays the variance of the stationary queue length for Poisson
arrivals and d = 3. What strikes is that the figure is quite similar to Fig. 8.10,
including the good performance of adaptive scheduling and the non-monotonic
behaviour. We have seen similar behaviour for geometric arrivals.

8.5 Conclusion

We have introduced the delayed bulk service queue as a model for the size of
the data queue in a reservation process. Using a technique by Kingman [95],
a bounding technique from Denteneer et al. [50], and a fluid approximation,
we have obtained an approximation to the mean data-queue length. Simula-
tions have shown that the approximation is satisfactory in case the data follow
a geometric or Poisson distribution, d > 0, and c = 0. However, the approxi-
mation breaks down in heavy traffic conditions for the case that c > 0.

Reservations with Transmission Delays 179

9 10 11 12 13 14 15 16 17 18
0

10

20

30

40

50

60

70

80

90

100

adaptive

c = 0

c = 3

c = 4

c = 1

c = 2

Λ

σ2
Xd

Fig. 8.13. σ2
Xd , d = 3

Both the approximation and simulations revealed a number of interesting
properties of the delayed bulk service queue. Firstly, we showed that the mean
data-queue length is increasing in d and grows without limits for d tending to
infinity. Secondly, and rather remarkably, we showed that for d > 0 and c > 0,
the mean data-queue length is not monotonic in the traffic intensity. Thus, the
mean data-queue length first grows with the mean traffic intensity. However, as
the traffic intensity approaches the stability bound, the mean data-queue length
decreases substantially.

Thirdly, we consider the heavy-traffic limit. The correlation term will vanish
in the heavy-traffic limit where μY approaches (f − c)/c. Thus, Theorem 8.1
implies that there exists a heavy-traffic limit in case c > 0. In fact, for c > 0,
the heavy-traffic limit for the delayed flexible boundary model equals the heavy
traffic limit for the ordinary bulk service queue and will be dominated by the
term cσ2

Y /(2(f − c− cμY)). In case c = 0 there is no stability bound, and the
expected inflow following empty periods equals fμY which always increases
in μY .

Fourthly, we showed that (8.4) admits a static scheduling strategy. This
scheduling strategy relies on the fact that the optimisation of the mean data-
queue length with respect to c yields a non-trivial function of the traffic inten-
sity. These findings are in line with simulation results in [78, 150].

Our investigations also led us to propose an alternative, adaptive, scheduling
strategy. This adaptive strategy determines the number of request slots in frame

180 MULTIACCESS, RESERVATIONS & QUEUES

n based on the queue length at the beginning of frame n and the request slots
scheduled in the d previous frames. It thus takes the propagation delay into
account. Numerical examples showed that the adaptive scheduling performs
much better than the static scheduling, due to the fact that adaptive scheduling
better succeeds in reducing the correlation of the input process.

APPENDIX 8.A: Proof of Theorem 8.1

Define

Sn−d =
c+Mn−d∑

i=1

Yn−d,i. (8.A.1)

It holds that Xn − s = Pn − Mn = Xn+1 − Sn−d − Mn. Take expectations,
limits for n → ∞, and rearrange to obtain

E(Md) = (s − cμY)/(1 + μY). (8.A.2)

Next, we use that Pn = Xn+1 − Sn−d together with (8.6) to obtain

(Xn − s)2 = P 2
n + M2

n

= (Xn+1 − Sn−d)
2 + M2

n

= X2
n+1 − 2Xn+1Sn−d + S2

n−d + M2
n

= X2
n+1 − 2 (Pn + Sn−d)Sn−d + S2

n−d + M2
n

= X2
n+1 − 2PnSn−d − S2

n−d + M2
n. (8.A.3)

It follows in particular that

2sXn = s2 + X2
n − X2

n+1 + 2PnSn−d + S2
n−d − M2

n. (8.A.4)

Furthermore, it holds that

E
(
S2

n−d

)
= (c + E(Mn−d))σ2

Y +
(
c2 + 2cE(Mn−d) + E(M2

n−d)
)
μ2

Y ,
(8.A.5)

and

E(PnSn−d) = cE(Pn)μY + E(PnMn−d)μY

= cE (Xn − s + Mn)μY + E(PnMn−d)μY . (8.A.6)

Take expectations in (8.A.4), substitute (8.A.5) and (8.A.5), take limits for n →
∞, and rearrange to obtain

E(Xd)2(s − cμY) = (s − cμY)2 + 2cE(Md)(μY + μ2
Y) + E(Md)σ2

Y

+cσ2
Y + E((Md)2)(μ2

Y − 1) + 2E(Rd)μY ,

with E(Rd) given by (8.8). Finally, substituting (8.A.2) yields (8.7). �

Reservations with Transmission Delays 181

APPENDIX 8.B: Stationary Distribution

Let Y (z) =
∑∞

k=0 P(Y = k)zk be the pgf of Y and define yj
k =

P(Y1 + · · · + Yj = k), where Yi i.i.d. as Y for all i. Denote by μY and σ2
Y

the mean and variance of Y . Let Mn = (s − Xn)+, where x+ := max(0, x).
From (8.4) it is clear that Zn := {(Xn, Mn−1, . . . , Mn−d)} is a Markov chain.
The variables Mn−1, . . . , Mn−d constitute our memory, in the sense that these
variables keep track of all reservation efforts of which the outcome is still not
known. We henceforth assume that this Markov chain is irreducible and aperi-
odic; for example, this holds when P(Y = k) > 0 for all k ≥ 0. The ergodicity
condition is formulated in the following lemma.

Lemma 8-8.B.1 The Markov chain Zn is ergodic if

cμY − s < 0. (8.B.1)

Proof By partitioning the state space of the Markov chain Zn into levels i,
where level i is the subset of states for which the queue length is i, i = 0, 1, . . .,
it is readily seen that the probability transition matrix is an M/G/1-type stochas-
tic matrix, see [133]. Hence, the ergodicity condition is the usual condition
stating that the average drift should be negative, which in this case reduces to
inequality (8.B.1). For an alternative proof of (8.B.1), based on Foster’s crite-
rion, the reader is referred to [52]. �

In the sequel we assume that (8.B.1) is satisfied. The Markov chain Zn then
has a unique stationary distribution

π(k, m1, . . . , md) = lim
n→∞P(Xn = k, Mn−1 = m1, . . . , Mn−d = md),

(8.B.2)
where k ≥ 0 and mi ∈ {0, . . . , s} for all i. Let X denote a random variable
distributed according to the stationary queue length distribution

π(k) := P(X = k) = lim
n→∞P(Xn = k). (8.B.3)

The probability generating function of X is then given by

G(z) =
s∑

m1=0

· · ·
s∑

md=0

Gm1,...,md
(z), (8.B.4)

where

Gm1,...,md
(z) =

∞∑
k=0

π(k, m1, . . . , md)zk. (8.B.5)

In the analysis below we make use of the normalisation condition
s−1∑
k=0

s∑
m1=0

· · ·
s∑

md=0

π(k, m1, . . . , md)(s − k) =
s − cμY

1 + μY
, (8.B.6)

182 MULTIACCESS, RESERVATIONS & QUEUES

which can be explained as follows. The left-hand side of (8.B.6) clearly ex-
presses the additional reservation effort per frame. On average, the guaran-
teed reservation effort brings per frame cμY of new packets to the queue,
each packet requiring one slot. Hence, cμY of the remaining s slots per frame
are spent on serving these packets. This leaves s − cμY slot, of which only
(s − cμY)/(1 + μY) slots can be spent on additional reservation (since one
reservation slot results on average in μY new packets).

Case d = 0

We start from the balance equations (for k = 0, 1, . . .)

π(k) =
k+s∑
k′=s

π(k′)yc
k−k′+s +

s−1∑
k′=0

π(k′)yc+s−k′
k . (8.B.7)

Multiplying both sides of (8.B.7) by zk, summing over all values of k, and
rearranging terms yields

G(z) =
Y (z)c

∑s−1
k=0 π(k)(zsY (z)s−k − zk)

zs − Y (z)c
. (8.B.8)

The expression (8.B.8) is of indeterminate form, but the s boundary probabil-
ities π(0), . . . , π(s − 1) can be determined by consideration of the zeros of
the denominator in (8.B.8) that lie on or within the unit circle. The following
lemma is a restatement of Theorem 6.1.

Lemma 8-8.B.2 If cμY < s and P(Y = 0) > 0, it holds that zs = Y (z)c

has s roots on or within the unit circle.

Denote the s roots of zs = Y (z)c in |z| ≤ 1 by z0 = 1, z1, . . . , zs−1.
Since the function G(z) is finite on and inside the unit circle, the numerator of
the right-hand side of (8.B.8) needs to be zero for each of the s roots, i.e., the
numerator should vanish at the exact points where the denominator of the right-
hand side of (8.B.8) vanishes. For z0 = 1, this is trivial, so Lemma 8-8.B.2 and
(8.B.8) lead to s − 1 (non-trivial) equations in terms of the s boundary proba-
bilities. The final equation follows from the normalisation condition (8.B.6).

Case d = 1

In this case we include one memory variable Mn−1 into our state description,
and we distinguish between the balance equations for states (k, m1) for which
m1 = 0

π(k, 0) =
s∑

i=0

k+s∑
k′=s

π(k′, i)yc+i
k−k′+s , (8.B.9)

Reservations with Transmission Delays 183

and for which m1 ∈ {1, . . . , s}

π(k, m1) =
s∑

i=0

π(s − m1, i)yc+i
k . (8.B.10)

Multiplying both sides of (8.B.9) and (8.B.10) by zk and summing over all
values of k yields

G0(z) = z−s
s∑

i=0

(
Gi(z) −

s−1∑
k=0

π(k, i)zk
)
Y (z)c+i, (8.B.11)

and

Gm1(z) =
s∑

i=0

π(s − m1, i)Y (z)c+i, m1 ∈ {1, . . . , s}, (8.B.12)

respectively. Upon substituting (8.B.12) into (8.B.11) and rearranging terms
we find

G0(z) =
Y (z)c

∑s
i=0

∑s−1
k=0 π(k, i)(Y (z)s+c+i−k − zkY (z)i)

zs − Y (z)c
. (8.B.13)

Hence, (8.B.12) and (8.B.13) still contain s(s + 1) boundary probabilities

π(k, m1), k = 0, . . . , s − 1, m1 = 0, . . . , s,

which should be determined. We therefore match these unknowns by equally
many equations: s2 equations follow from (8.B.10), s − 1 equations follow
from Lemma 8-8.B.2 and (8.B.13), and a final equation is provided by the
normalisation condition (8.B.6).

Case d = 2

We now include two memory variables Mn−1 and Mn−2 into our state de-
scription, but for the balance equations we only need to distinguish between
the states (k, m1, m2) with m1 = 0 and m1 ∈ {1, . . . , s}. We get

π(k, 0, m2) =
s∑

i=0

k+s∑
k′=s

π(k′, m2, i)yc+i
k−k′+s, (8.B.14)

and for m1 ∈ {1, . . . , s}

π(k, m1, m2) =
s∑

i=0

π(s − m1, m2, i)yc+i
k , (8.B.15)

184 MULTIACCESS, RESERVATIONS & QUEUES

and so we obtain for m2 ∈ {0, . . . , s}

G0,m2(z) = z−s
s∑

i=0

(
Gm2,i(z) −

s−1∑
k=0

π(k, m2, i)zk
)
Y (z)c+i, (8.B.16)

and for m1 ∈ {1, . . . , s} and m2 ∈ {0, . . . , s}

Gm1,m2(z) =
s∑

i=0

π(s − m1, m2, i)Y (z)c+i. (8.B.17)

Upon rearranging terms in (8.B.16) for m2 = 0 we get

G0,0(z) =
Y (z)c

∑s
i=1(G0,i(z)Y (z)i −∑s

i=0

∑s−1
k=0 π(k, 0, i)zkY (z)i)

zs − Y (z)c
.

(8.B.18)
Equations (8.B.16)–(8.B.18) contain s(s + 1)2 boundary probabilities

π(k, m1, m2), k ∈ {0, . . . , s − 1}, m1, m2 ∈ {0, . . . , s}, (8.B.19)

which can again be matched by equally many equations. In this case, s2(s+1)
equations follow from (8.B.15) for k ∈ {0, . . . , s − 1}, m1 ∈ {1, . . . , s},
m2 ∈ {0, . . . , s}, s − 1 equations follow from Lemma 8-8.B.2 and (8.B.18)
(using (8.B.16) and (8.B.17)), and one equation follows from the normalisation
condition (8.B.6). So we need an extra s2 equations. For this, we consider the
probabilities π(k, 0, m2), k ∈ {0, . . . , s−1}, m2 ∈ {1, . . . , s}, see Fig. 8.B.1.
Note that these probabilities can be expressed through (8.B.14) in terms of
the probabilities π(k′, m2, i), k′ ∈ {s, . . . , 2s − 1}, m2 ∈ {1, . . . , s}, i ∈
{0, . . . , s}, only. Each of the latter probabilities can be written in terms of the
boundary probabilities through (8.B.15), yielding s2 equations.

s

s

s

m2

m1

0

1

2s 1⎯ s 1⎯
k

Fig. 8.B.1. The states corresponding to the boundary probabilities (8.B.19) and the additional
probabilities π(k′, m2, i), k′ ∈ {s, . . . , 2s − 1}, m2 ∈ {1, . . . , s}, i ∈ {0, . . . , s}

Reservations with Transmission Delays 185

General Case

It might be clear from the analysis for d = 2 that we can take a similar approach
for d = 3, 4, We start from the balance equations

π(k, 0, m2, . . . , md) =
s∑

i=0

k+s∑
k′=s

π(k′, m2, . . . , md, i)yc+i
k−k′+s, (8.B.20)

and for m1 ∈ {1, . . . , s}

π(k, m1, m2, . . . , md) =
s∑

i=0

π(s − m1, m2, . . . , md, i)yc+i
k , (8.B.21)

and obtain

G0,m2,...,md
(z)

Y (z)c+i
= z−s

s∑
i=0

(
Gm2,...,md,i(z) −

s−1∑
k=0

π(k, m2, . . . , md, i)zk
)
,

(8.B.22)

and for m1 ∈ {1, . . . , s}

Gm1,...,md
(z) =

s∑
i=0

π(s − m1, m2, . . . , md, i)Y (z)c+i. (8.B.23)

For m2 = m3 = . . . = md = 0 we get from (8.B.22)

G0,...,0(z) =
∑s

i=1

(
G0,...,0,i(z) −∑s−1

k=0 π(k, 0, . . . , 0, i)zk
)
Y (z)c+i

zs − Y (z)c
.

(8.B.24)
We should then still determine the s(s + 1)d boundary probabilities

π(k, m1, . . . , md), k ∈ {0, . . . , s − 1}, m1, . . . , md ∈ {0, . . . , s}
(8.B.25)

and so we need equally many equations. Equation (8.B.21) immediately yields
s2(s+1)d−1 equations, and we thus search for an extra s(s+1)d−1 equations.

Consider (8.B.20) for m2 ∈ {1, . . . , s}. The probabilities on the right-hand
side of (8.B.20) can be written in terms of the boundary probabilities through
(8.B.21), which yields s2(s + 1)d−2 equations. Likewise, (8.B.20) for m2 = 0
and m3 ∈ {1, . . . , s} yields s2(s + 1)d−3 equations, and we can repeat this
trick all the way up to (8.B.20) for m2 = · · · = md−1 = 0, md ∈ {1, . . . , s}
(which yields s2 equations). Altogether, this leads to

s2(s + 1)d−2 + s2(s + 1)d−3 + · · · + s2

equations. Together with the s−1 equations from Lemma 8-8.B.2 and (8.B.24),
and the normalisation condition (8.B.6), we then have exactly s(s + 1)d−1

equations.

PART IV

SHARED SERVICE CAPACITY

Chapter 9

A TANDEM QUEUE

WITH COUPLED PROCESSORS

In this chapter we investigate the two-stage tandem queue with coupled proces-
sors, which has been suggested as a model for a reservation mechanism in
Sect. 2.4. It is assumed that jobs arrive at the first station according to a Pois-
son process and require service at both stations before leaving the system. The
amounts of work that a job requires at each of the stations are independent,
exponentially distributed random variables. When both stations are nonempty,
the total service capacity is shared between the stations according to fixed pro-
portions. When one of the stations becomes empty, the total service capacity is
given to the nonempty station.

We study the two-dimensional Markov process that represents the numbers
of jobs at the two stations. The problem of finding the generating function of
the stationary distribution can be reduced to two different Riemann–Hilbert
boundary value problems. Although both problems yield a complete analytical
solution, they have different features from the numerical viewpoint. We discuss
the similarities and differences between the two problems, and relate them to
the computational aspects of obtaining performance measures.

9.1 Introduction

One application of the tandem queue with coupled processors is a cable access
network regulated by a reservation mechanism, and we refer to Sect. 2.4 for an
elaboration of this point of view. Another application of the model would be an
assembly line for which two operations on each job must be performed using a
limited service capacity. By coupling the service at each of the operations, and
thus using the service capacity of an operation for which no jobs are waiting
for the other operation, imbalance in the assembly line can be reduced and the
throughput can be increased, see, e.g. Andradottir et al. [6].

190 MULTIACCESS, RESERVATIONS & QUEUES

Resing and Örmeci [148] have shown for the two-dimensional Markov
process representing the numbers of jobs at the two stations, that the problem
of finding the bivariate generating function of the stationary distribution can be
reduced to a Riemann–Hilbert boundary value problem. In [148] the issue of
how to obtain performance measures has not been discussed. In general, ob-
taining performance measures from the formal solution of a Riemann–Hilbert
boundary value problem is not straightforward. In this chapter we discuss the
numerical issues that arise when computing performance measures. In particu-
lar, we consider the fraction of time a station is empty and the mean stationary
queue length at a station. The reduction of the problem of finding the generat-
ing function to a boundary value problem usually follows from considering a
specific zero-set of the kernel of the functional equation. This can be done in
more than one way. We discuss, next to the zero-set considered in [148], one
other zero-set that leads to a second Riemann–Hilbert boundary value problem.
From the analytical viewpoint, the second formulation has little added value,
since solving either one of the two problems gives a full solution to the model.
However, in determining performance measures numerically, the two problems
have different features.

We describe the model and the key functional equation for the model in
Sect. 9.2. In Sect. 9.3 we analyse the kernel of the functional equation. The
results are used in Sects. 9.4 and 9.5 to reduce the problem of solving the func-
tional equation to two different Riemann–Hilbert boundary value problems.
Specific attention is paid to determining the conformal map that is required
for the solution of the second Riemann–Hilbert boundary value problem. In
Sect. 9.6 we derive some performance measures for the model and we discuss
issues that arise when numerically determining the performance measures from
the formal solutions of the Riemann–Hilbert boundary value problems. Among
other things, we show that we can determine the performance measures for the
whole set of allowed parameter values. Finally, we give some numerical results
in Sect. 9.6.5.

9.2 Model Description

Consider a two-stage tandem queue, where jobs arrive at queue 1 according
to a Poisson process with rate λ, each job demanding service at both queues
before leaving the system. Each job requires an exponential amount of work
with parameter νj at station j, j = 1, 2. The total service capacity of the two
stations together is fixed. Without loss of generality we assume that this total
service capacity equals one unit of work per time unit. Whenever both stations
are nonempty, a proportion p of the capacity is allocated to station 1, and the
remaining part 1−p is allocated to station 2. Thus, when there is at least one job
at each station, the departure rate of jobs at station 1 is ν1p and the departure

A Tandem Queue with Coupled Processors 191

rate of jobs at station 2 is ν2(1 − p). Here we assume that 0 < p < 1, so that
there is a real capacity sharing between the two stations. For the cases p = 0
and p = 1, the system can be seen as a tandem queue with a single server
moving between the two queues and giving priority to one of the queues. The
solutions for these cases are given in Resing and Örmeci [148].

When one of the stations becomes empty, the total service capacity is allo-
cated to the nonempty station. Hence, the departure rate at that station, station
j say, is temporarily increased to νj . With Xj(t) the number of jobs at station
j at time t, the two-dimensional process {(X1(t), X2(t)), t ≥ 0} is a Markov
process. The condition under which this Markov process has a unique station-
ary distribution is given by

λ

ν1
+

λ

ν2
< 1. (9.1)

This can be explained by the fact that, independent of p, the two stations to-
gether always work at capacity 1 (if there is work in the system), and that
λ/ν1 + λ/ν2 equals the amount of work brought into the system per time unit.
We henceforth assume that the ergodicity condition is satisfied.

Let us denote by π(n, k) the stationary probability of having n customers
at station 1 and k customers at station 2, i.e. π(n, k) = limt→∞ P(X1(t) =
n, X2(t) = k). The following set of balance equations can then be derived:

λπ(0, 0) = ν2π(0, 1),
(λ + ν2)π(0, 1) = ν1π(1, 0) + ν2π(0, 2),
(λ + ν2)π(0, k) = p ν1π(1, k − 1) + ν2π(0, k + 1), k ≥ 2,

and for n ≥ 1

(λ + ν1)π(n, 0) =λπ(n − 1, 0) + (1 − p) ν2π(n, 1),
λ + p ν1 + (1 − p) ν2π(n, 1) =λπ(n − 1, 1) + ν1π(n + 1, 0)

+ (1 − p) ν2π(n, 2),
λ + p ν1 + (1 − p) ν2π(n, k) =λπ(n − 1, k) + p ν1π(n + 1, k − 1)

+ (1 − p) ν2π(n, k + 1), k ≥ 2.

We define the joint probability generating function

P (x, y) :=
∑
n≥0

∑
k≥0

π(n, k)xnyk, |x| ≤ 1, |y| ≤ 1,

which is, for every fixed y, regular for |x| < 1 and continuous for |x| ≤ 1.
A similar statement holds for x and y interchanged. From the balance equations
it follows that P (x, y) satisfies the functional equation

h1(x, y)P (x, y) = h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0),
(9.2)

192 MULTIACCESS, RESERVATIONS & QUEUES

where

h1(x, y) = (λ + p ν1 + (1 − p) ν2)xy − λx2y − p ν1y
2 − (1 − p) ν2x,

h2(x, y) = (1 − p) [ν1 y(y − x) + ν2 x(y − 1)],
h3(x, y) = p [ν2 x(1 − y) + ν1 y(x − y)],
h4(x, y) = p ν2 x(y − 1) + (1 − p) ν1 y(x − y).

The constant P (0, 0) can be determined by substituting

x = γ(y) := ν1y
2/(ν1y − ν2y + ν2)

into (9.1). For this choice of x, both h2(x, y) and h3(x, y) equal zero, and
hence (9.1) reduces to

P (γ(y), y) =
h4(γ(y), y)
h1(γ(y), y)

P (0, 0). (9.3)

Letting y ↑ 1 in (9.3), we obtain P (0, 0) = 1 − λ/ν1 − λ/ν2. This result can
again be explained by the fact that, independent of p, the two stations together
always work at capacity 1 (if there is work in the system), and that λ/ν1+λ/ν2

equals the amount of work brought into the system per time unit.

9.3 Analysis of the Kernel

In the analysis of the functional equation (9.1) a crucial role is played by the
kernel h1(x, y). Due to the regularity properties of P (x, y), for each pair (x, y)
on or within the unit circle for which h1(x, y) equals zero, the right-hand side
of (9.1) must vanish. This provides us with a relation between the unknown
functions P (0, y) and P (x, 0). From the observation that h1(x, y) is a polyno-
mial in either x or y, we can construct two Riemann–Hilbert boundary value
problems, one for the function P (x, 0) and one for the function P (0, y).

Blanc [18] has investigated the transient behaviour of the ordinary tandem
queue without coupled processors, for which the kernel h1(x, y) is of exactly
the same form. Since Blanc has studied h1(x, y) as a polynomial in y, most of
the results presented in this section stem from his work. Using these results,
the problem of finding the stationary queue length distribution can be reduced
to a Riemann–Hilbert boundary value problem for P (0, y), as presented in
Sect. 9.4. In Sect. 9.5 we derive a Riemann–Hilbert boundary value problem
for P (x, 0).

We introduce
r1 =

λ

pν1
, r2 =

λ

(1 − p)ν2
,

as the loads on each of the stations if they would work in isolation (no cou-
pling). For notational convenience, we also introduce

r̂ = 1 +
1
r1

+
1
r2

,

A Tandem Queue with Coupled Processors 193

such that
h1(x, y) = λ

[
r̂xy − x2y − 1

r1
y2 − 1

r2
x
]
. (9.4)

Observe that h1(x, y) is, for each x, a polynomial of degree 2 in y. We thus
have that for every value of x there are two possible values of y, say y1(x) and
y2(x), such that h1(x, y1(x)) = h1(x, y2(x)) = 0. These can be described by
the two-valued function

y(x) =
r1

2
[s1(x) ±

√
D1(x)], (9.5)

where
s1(x) = (r̂ − x)x, D1(x) = s1(x)2 − 4x

r1r2
.

We then obtain the following result:

Lemma 9.1 The algebraic function y(x), defined by h1(x, y(x)) = 0, has
four real branch points 0 = x1 < x2 ≤ 1 < x3 < x4.

Proof The branch points of y(x) are zeros of the discriminant D1(x).
Clearly, D1(0) = 0, limx↓0 D1(x) < 0, D1(1) ≥ 0, D1(r̂) < 0 and
limx→∞ D1(x)=∞. Furthermore, if D1(1) = 0 (i.e. r1 = r2 < 1) then
D′

1(1) > 0. �

For later use, we present the following lemma which shows that the mapping
y(x) for x ∈ [0, x2] gives rise to a smooth and closed contour L, see Fig. 9.1.

Re(y)

Im(y)

y2(x)

y1(x)

x2

L
C

a0 0−1

−1

1

1

Fig. 9.1. The mapping y = y(x) : [0, x2] → L

194 MULTIACCESS, RESERVATIONS & QUEUES

Lemma 9.2 For each x ∈ [0, x2], y(x) lies on the closed contour L, which is
symmetric with respect to the real line, and defined by

|y|2 =
r1

2r2

(
r̂ −
√

r̂2 − 8Re(y)/r1

)
. (9.6)

It further holds that
|y|2 ≤ r1

r2
x2. (9.7)

Proof For x ∈ [0, x2], D1(x) is negative, so y1(x) and y2(x) are complex
conjugates. It also follows that

Re(y) =
r1

2
(r̂ − x)x. (9.8)

Furthermore, from h1(x, y(x)) = 0 we have |y|2 = r1x/r2 ≤ r1x2/r2.
Since (9.8) is a quadratic equation in x, substituting one of the two solutions
into |y|2 = r1x/r2 yields (9.6). Of course, we choose the solution of x for
which y(0) = 0 and y(x2) =

√
r1x2/r2 lie on the contour. �

We will henceforth denote the interior of L by L+, and set

α := y(x2) =
√

r1x2/r2, (9.9)

representing the point on L with the largest modulus. With respect to α, the
following assertions hold.

Lemma 9.3 If r1 = r2, then α = 1. If r1 < r2, then α < 1. If r1 > r2, then
α > 1.

Proof For r1 = r2, we have that D1(1) = 0, so x2 = α = 1. For r1 < r2,
knowing x2 < 1, it follows that α < 1. For r1 > r2, knowing x2 < 1, we have
that D1(r2/r1) < 0 since r2 + r2(1 − r2)/r1 < 1, and thus r2/r1 < x2 and
α > 1. �

We note that α = 1 (respectively α < 1, α > 1) implies 1 ∈ L (respectively
1 /∈ L ∪ L+, 1 ∈ L+), which plays a crucial role in the numerical work to be
presented in Sect. 9.6.

Paralleling the approach above, the kernel h1(x, y) is, for each y, a polyno-
mial of degree 2 in x. Thus for each y there are two possible values of x, say
x1(y) and x2(y), such that h1(x1(y), y) = h1(x2(y), y) = 0. These can be
described by the two-valued function

x(y) =
1
2y

[
s2(y) ±

√
D2(y)

]
, (9.10)

where

s2(y) = r̂y − 1
r2

, D2(y) = s2(y)2 − 4y3

r1
.

A Tandem Queue with Coupled Processors 195

Re(x)

Im(x)

C

R

b0

−1

−1

1

1

x2(y)

x1(y)

y2y1

Fig. 9.2. The mapping x = x(y) : [y1, y2] → R

The following then holds:

Lemma 9.4 The algebraic function x(y) defined by h1(x(y), y) = 0 has
three real branch points 0 < y1 < y2 ≤ 1 < y3.

Proof The branch points of x(y) are zeros of the discriminant D2(y). Clearly,
D2(0) = 1/r2

2 > 0, D2(1) = (1−1/r1)2 ≥ 0 and limy→∞ D2(y) = −∞. For
ŷ = 1/(r2r̂) ∈ (0, 1), it holds that D2(ŷ) = −4ŷ3/r1 < 0. Also, if D2(1) = 0
(which implies r1 = 1 and, due to the ergodicity condition, r2 < 1) then
D′

2(1) = 4(1/r2 − 1) > 0. �

We now study the mapping x(y) for y ∈ [y1, y2] in some more detail. This
mapping can be shown to give rise to a smooth and closed contour R, as spec-
ified in the next lemma and illustrated in Fig. 9.2.

Lemma 9.5 For each y ∈ [y1, y2], x(y) lies on the closed and smooth con-
tour R, which is symmetric with respect to the real line, and defined by:

|x|2 =
1

r1r2(r̂ − 2Re(x))
, (9.11)

|x|2 ≤ y2

r1
. (9.12)

Proof Similar to the proof of Lemma 9.2. �

We set
β := x(y2) =

√
y2/r1, (9.13)

the point on R with the largest modulus, for which it holds that

196 MULTIACCESS, RESERVATIONS & QUEUES

Lemma 9.6 (i) When either r1 = 1 or r2 = 1 we have that β = 1. (ii) When
both r1 < 1 and r2 < 1 we have that β > 1. (iii) When either r1 > 1 or r2 > 1
we have that β < 1.

Proof (1) If r1 = 1, then y2 = 1 and thus β = 1. If r2 = 1, then y2 = r1 and
thus β = 1.

(2) For β > 1 we should prove that r1 < y2. Consider the function f(r1) :=
D2(r1) = −4r2

1 + (1 + r1 + r1/r2 − 1/r2)2. The solutions to f(r1) = 0 are
given by r1 = 1 and r1 = r̂1 = (1 − r2)/(1 + 3r2). For r1 = r̂1 it holds that
r1 = y1 < y2. Assume that there exists a value r1 ∈ (0, 1) for which it holds
that r1 > y2. Then, since y2 is a continuous function of r1, there should be a
value in (0, 1) other than r̂1 for which r1 = y2 and hence f(r1) = 0. This is
not the case, and thus r1 < y2 for all values r1 ∈ (0, 1).

(3) If r1 > 1, then obviously r1 > y2 and thus β < 1. Now assume r2 > 1.
Then, for β < 1 we should prove that r1 > y2. Note that f(r1) is positive for
all values r1 ∈ (0, 1). This implies that r1 < y1 or r1 > y2, see the proof of
Lemma 9.4. Furthermore, y1 < ŷ < 1/2 for r2 > 1 and r1 ∈ (0, 1), when ŷ
as defined in the proof of Lemma 9.4. Hence, for r1 ≥ 1/2 it clearly holds that
r1 > y1. Assume that there exists a value r1 ∈ (0, 1) for which it holds that
r1 < y1. Then, since y1 is a continuous function of r1, there should be a value
in (0, 1) for which r1 = y1 and hence f(r1) = 0. This is not the case, and thus
r1 > y2 for all values r1 ∈ (0, 1). �

We again note that β = 1 (respectively β < 1, β > 1) implies 1 ∈ R
(respectively 1 /∈ R∪R+, 1 ∈ R+), which plays a crucial role in the numerical
work to be presented in Sect. 9.6 .

9.4 Boundary Value Problem I

In the previous section we considered the kernel as a polynomial in either y
or x, which may lead to the curves L and R, respectively. In this section we
describe how the curve L leads to a Riemann–Hilbert boundary value problem
for the function P (0, y).

Lemma 9.7 The function P (0, y) is regular in the domain L+ and satisfies
for y ∈ L the condition

Im(P (0, y)) = Im
(
−P (0, 0)

h4(r2|y|2/r1, y)
h3(r2|y|2/r1, y)

)
. (9.14)

Proof For zero-pairs (x, y) of the kernel h1(x, y) for which P (x, y) is finite,
we have

h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0) = 0, (9.15)

A Tandem Queue with Coupled Processors 197

from which it follows that, for those zero-pairs,

P (0, y) =
1 − p

p
P (x, 0) − h4(x, y)

h3(x, y)
P (0, 0). (9.16)

Thus, (9.14) follows from the fact that P (x, 0) is real for x ∈ [0, x2] and
|y|2 = r1x/r2 for y ∈ L. If α ≤ 1, L lies entirely within the unit circle. Hence,
P (0, y) is regular in L+. If α > 1, P (0, y(x)) can be continued analytically
over the interval [0, x2] via (9.15), because P (x, 0) is regular on this interval.
Hence, the analytic continuation of P (0, y) is finite at y = y(x2). Because
P (0, y) has a power series expansion at y = 0 with positive coefficients, this
implies that P (0, y) is regular for |y| < y(x2) and hence in L+. �

Lemma 9.7 shows that the determination of P (0, y) reduces to the determi-
nation of the solution of the following Riemann–Hilbert boundary value prob-
lem on the contour L: Determine a function P (0, y) such that

1. P (0, y) is regular for y ∈ L+ and continuous for y ∈ L ∪ L+.

2. Re (iP (0, y)) = c(y), for y ∈ L,

where

c(y) = Im
(

P (0, 0)
h4(r2|y|2/r1, y)
h3(r2|y|2/r1, y)

)
.

The standard way to solve this type of boundary value problem is to trans-
form the boundary condition (9.14) to a condition on the unit circle, see,
e.g. Muskhelishvili [129], p. 108. Denote the unit circle by C and its interior
by C+. We introduce the conformal mapping

z = f(y) : L+ → C+, (9.17)

and its inverse
y = f0(z) : C+ → L+. (9.18)

Using these mappings, we can reduce the Riemann–Hilbert problem on L to
the following problem: Determine a function G(z) such that

1. G(z) is regular for z ∈ C+ and continuous for z ∈ C ∪ C+.

2. Re (iG(z)) = c̃(z), for z ∈ C, where c̃(z) = c(f0(z)),

which is known as the Dirichlet problem on a circle. Its solution is given by,
see Muskhelishvili [129] p. 108,

G(z) = − 1
2π

∮
C

c̃(w)
w + z

w − z

dw

w
+ K1, z ∈ C ∪ C+, (9.19)

198 MULTIACCESS, RESERVATIONS & QUEUES

where K1 is some constant. In this way, P (0, y) = G(f(y)) has been formally
determined as

P (0, y) = − 1
2π

∮
C

c(f0(w))
w + f(y)
w − f(y)

dw

w
+ K1, y ∈ L ∪ L+. (9.20)

We can rewrite the contour integral (9.20) as a real integral on [0, x2]. That is,
for y ∈ L+ ∪ L, we have that

P (0, y) = − 1
2π

∮
L

c(s)
f(s) + f(y)
f(s) − f(y)

df(s)
f(s)

+ K1 (9.21)

=
1
2π

[∫ x2

0
c(y1(x))

f(y1(x)) + f(y)
f(y1(x)) − f(y)

f ′(y1(x))y′1(x)
f(y1(x))

dx

−
∫ x2

0
c(y2(x))

f(y2(x)) + f(y)
f(y2(x)) − f(y)

f ′(y2(x))y′2(x)
f(y2(x))

dx

]
+ K1.

(9.22)

Remark 9.1 For this specific problem, an explicit expression for the confor-
mal mapping f(y) can be found, see Blanc [18]. It is given by

f(y) =
yk(η) − ηk(y)
yk(η) + ηk(y)

, (9.23)

where
k(y) = (α − y)

√
r1 − r2

2α
2y,

and η is some unspecified constant in the interval (0, α). For our computations
we set η = α/2. With the explicit expression for f(y) we have all ingredients
for calculating the integral (9.21), as will be further discussed in Sect. 9.6.

9.5 Boundary Value Problem II

In this section we will show how the second zero-set discussed in Sect. 9.3 that
leads to the curve R gives rise to a Riemann–Hilbert problem for the function
P (x, 0). The approach is similar to the one followed in Sect. 9.4.

Lemma 9.8 The function P (x, 0) is regular in the domain R+ and satisfies
for x ∈ R the condition

Im(P (x, 0)) = Im
(
−P (0, 0)

h4(x, r1|x|2)
h2(x, r1|x|2)

)
. (9.24)

Proof Similar to the proof of Lemma 9.7. �

A Tandem Queue with Coupled Processors 199

Lemma 9.8 shows that the determination of P (x, 0) reduces to the determina-
tion of the solution of the following Riemann–Hilbert boundary value problem
on the contour R: Determine a function P (x, 0) such that

1. P (x, 0) is regular for x ∈ R+ and continuous for x ∈ R ∪ R+.

2. Re (iP (x, 0)) = d(x), for x ∈ R,

where

d(x) = Im
(

P (0, 0)
h4(x, r1|x|2)
h2(x, r1|x|2)

)
. (9.25)

Note that this problem is inherently different from the Riemann–Hilbert
problem for P (0, y) discussed in the previous section, in the sense that there is
no symmetry in x and y. Moreover, the contours on which the problems have
been defined have different features as well, see Lemmas 9.2 and 9.5.

We introduce the conformal mapping

z = g(x) : R+ → C+, (9.26)

and its inverse
x = g0(z) : C+ → R+, (9.27)

which again allows us to reduce the Riemann–Hilbert problem to a Dirichlet
problem on the unit circle: Determine a function H(z) such that

1. H(z) is regular for z ∈ C+ and continuous for z ∈ C ∪ C+.

2. Re (iH(z)) = d̃(z), for z ∈ C, where d̃(z) = d(g0(z)).

This implies that the solution of P (x, 0) is given by

P (x, 0) = H(g(x)) = − 1
2π

∮
C

d(g0(w))
w + g(x)
w − g(x)

dw

w
+K2, x ∈ R∪R+,

(9.28)
where K2 is some constant.

For the particular case that r1 = 1, our contour R coincides with a contour
in Blanc [17], in which a paired service model is studied using boundary value
theory. In this case, an explicit expressions for the conformal mapping g(x) is
given by, see [17], p. 882:

g(x) = 1 − 2δ(1 − x)2(1 − xr2)
x(1 − δ)2(1 − δr2)

(
1 +

x − δ

δ(1 − x)

√
1 − xδ2r2

1 − xr2

)
, (9.29)

where δ = (1 − √
1 + 8r2)/(4r2). Unfortunately, we have not been able to

derive an exact expression for g(x) in the case that r1
= 1. When an explicit
expression for g(x) is not available, the standard approach is to determine the

200 MULTIACCESS, RESERVATIONS & QUEUES

inverse mapping g0(z) using a well-known method from the theory of confor-
mal mappings. This is sufficient to calculate (9.28), since we show in Sect. 9.6
that we do not need the mapping g(x) to evaluate P (x, 0) in x.

For this approach, we need a representation of R in terms of polar coordi-
nates, i.e.

R = {x : x = ρ(φ) exp(iφ), 0 ≤ φ ≤ 2π}, (9.30)

which can be obtained in the following way. Since 0 ∈ R+, we have by (9.11)
that for each point x on R the relation between its absolute value and its real
part is given by |x|2 = m(Re(x)), where

m(δ) :=
1

r1r2(r̂ − 2δ)
. (9.31)

So, given the angle φ belonging to some point on R, the real part of this point,
to be denoted by δ(φ), is the solution of

δ − cos φ
√

m(δ) = 0, 0 ≤ φ ≤ 2π. (9.32)

The question arises when the solution to (9.32) is unique. This is the case when
R is a Jordan curve for which it holds that every ray from the point 0 intersects
the curve R exactly once. In fact, this is the notion of starshapedness, see Pólya
and Szegö [139], p. 125, Exercise 109. In all cases we have considered, R is
a smooth and egg-shaped contour, and thus a starshaped Jordan curve. We see
that ρ(φ) = δ(φ)/ cos φ, and so the parametrisation in (9.30) is fully specified.

For a contour that can be described in polar coordinates, the mapping from
C+ to the interior of this contour is formally given by, cf. Cohen and Boxma
[39], Sect. I.4.4, or Gaier [69], Sect. 2.1:

g0(z) = z exp
(

1
2π

∫ 2π

0
log(ρ(θ(ω)))

eiω + z

eiω − z
dω

)
, |z| < 1, (9.33)

where the angular deformation, θ(·), is uniquely determined as the solution of
Theodorsen’s integral equation

θ(φ) = φ −
∫ 2π

0
log(ρ(θ(ω))) cot

(
1
2
(ω − φ)

)
dω, 0 ≤ φ ≤ 2π. (9.34)

Here, θ(φ) is a strictly increasing and continuous function of φ, and θ(φ) =
2π − θ(2π − φ). According to the corresponding-boundaries theorem, see
Evgrafov [60], g0(z) is continuous in C ∪ C+. Equation (9.34) is nonlinear
and cannot be solved in closed form, though a unique solution can be proven
to exist.

We use (9.34) to determine boundary correspondence points. That is, for a
point on the unit circle given by its angle φ, we solve (9.34) numerically to
obtain the corresponding point on R, given by its angle θ(φ), see Fig. 9.3. The
numerical issues of this procedure are discussed in Sect. 9.6.

A Tandem Queue with Coupled Processors 201

C

R

b00 1

1

g0(z)

eiÁ

Á

½(μ(Á))e
iμ(Á)

μ(Á)

Fig. 9.3. Finding a boundary correspondence point through the mapping x = g0(z) : C → R

9.6 Performance Measures

In this section we present exact expressions for two performance measures: the
fraction of time a station is empty and the mean stationary queue length at a
station. Furthermore, we show for both performance measures that a relation
exists between its value at station 1 and station 2. As a consequence, an expres-
sion for a performance measure for one of the stations yields the performance
measure for the other station as well.

The fractions of time stations 1 and 2 are empty are given by P (0, 1) and
P (1, 0), respectively. Determining either P (0, 1) or P (1, 0) is sufficient to ob-
tain both, since they are related in the following way. Setting x = y in (9.1)
and taking the limit x ↑ 1 gives

P (1, 0) = 1 − λ

ν2
− p

1 − p

[
1 − λ

ν1
− P (0, 1)

]
. (9.35)

Equation (9.35) alternatively follows from one of the equations

λ = ν1(P (1, 0) − P (0, 0)) + pν1(1 − P (1, 0) − P (0, 1) + P (0, 0)),
λ = ν2(P (0, 1) − P (0, 0)) + (1 − p)ν2(1 − P (1, 0) − P (0, 1) + P (0, 0)).

These equations stem from the following reasoning: P (1, 0) − P (0, 0) is
the fraction of time station 1 is nonempty while station 2 is empty, and
1 − P (1, 0) − P (0, 1) + P (0, 0) is the fraction of time both stations are non-
empty. Thus, the first equation states that, for station 1, the arrival rate equals
the departure rate. Similarly, the second equation corresponds to the equality
of arrival-departure rates for station 2. Note that the equations are dependent
and therefore do not yield an explicit solution for P (1, 0) and P (0, 1).

We will now derive expressions for the mean queue length at both stations,
to be denoted by EX1 and EX2. First, we show how these mean queue lengths
are related. Differentiating both sides of (9.3) w.r.t. y, and letting y ↑ 1, yields

E(X1)
[

1
ν1

+
1
ν2

]
+ E(X2)

1
ν2

=
λ(ν2

1 + ν1ν2 + ν2
2)

ν1ν2(ν1ν2 − λ(ν1 + ν2))
. (9.36)

202 MULTIACCESS, RESERVATIONS & QUEUES

Again, an interpretation can be given. The left-hand side of (9.36) measures the
mean amount of work in the system by multiplying the mean number of jobs
at each station by the mean service time they still require before leaving the
system. The right-hand side of (9.36) corresponds to the mean amount of work
in an M/G/1 queue, see, e.g. Cohen [35], with Poisson arrivals with rate λ
and service times distributed as the sum of two independent and exponentially
distributed random variables with mean 1/ν1 and 1/ν2, respectively. Both sides
of (9.36) are equal due to the work conservation property of the system. By
(9.36) it suffices to calculate either EX1 or EX2 to obtain them both. We will
show how EX2 and EX1 follow from the solution of the Riemann–Hilbert
boundary value problems discussed in Sects. 9.4 and 9.5, respectively.

When setting x = 1 in (9.1), the factor (y−1) cancels from all terms leaving

P (1, y) =
ν1y + ν2

pν1y − (1 − p)ν2
(−(1 − p)P (1, 0) + pP (0, y))

+
(1 − p)ν1y − pν2

pν1y − (1 − p)ν2
P (0, 0). (9.37)

Taking derivatives w.r.t. y at both sides of (9.37) yields

d
dy

P (1, y) =
ν1ν2

(pν1y − (1 − p)ν2)2
((1 − p)P (1, 0) − pP (0, y))

+
(ν1y + ν2)p

pν1y − (1 − p)ν2

d
dy

P (0, y)

+
(2p − 1)ν1ν2P (0, 0)
(pν1y − (1 − p)ν2)2

. (9.38)

Plugging (9.35) into (9.38) and setting y = 1 then gives for pν1
= (1 − p)ν2:

E(X2) =
[d
dy

P (1, y)
]
y=1

= − λ

pν1 − (1 − p)ν2
+

(ν1 + ν2)p
pν1 − (1 − p)ν2

[d
dy

P (0, y)
]
y=1

.

(9.39)

Thus, to determine EX2, we only need to compute [d
dyP (0, y)]y=1. Note that

from (9.20) we have that, for y ∈ L ∪ L+,

d
dy

P (0, y) = − 1
π

∮
C

c(f0(w))
f ′(y)

(w − f(y))2
dw. (9.40)

Similarly, when setting y = 1 in (9.1), the factor (x − 1) cancels from all
terms, which gives

P (x, 1) =
(1 − p)ν1

pν1 − λx

[p

1 − p
P (0, 1) − P (x, 0) + P (0, 0)

]
. (9.41)

A Tandem Queue with Coupled Processors 203

Taking derivatives w.r.t. x at both sides of (9.41) yields

d
dx

P (x, 1) =
λν1(1 − p)
(pν1 − λx)2

[p

1 − p
P (0, 1) − P (x, 0) + P (0, 0)

]
−(1 − p)ν1

pν1 − λx

d
dx

P (x, 0). (9.42)

Plugging (9.35) into (9.42) and setting x = 1 then gives for λ
= pν1:

E(X1) =
[d
dx

P (x, 1)
]
x=1

=
λ

pν1 − λ
− (1 − p)ν1

pν1 − λ

[d
dx

P (x, 0)
]
x=1

.

(9.43)

Note that from (9.28) we have that, for x ∈ R ∪ R+,

d
dx

P (x, 0) = − 1
π

∮
C

d(g0(w))
g′(x)

(w − g(x))2
dw. (9.44)

Remark 9.2 When pν1 = (1 − p)ν2, setting y = 1 in (9.37) gives, after
applying l’Hôpital, [d

dy
P (0, y)

]
y=1

=
λ

(ν1 + ν2)p
=

λ

ν2
.

We then have an exact expression for [d
dyP (0, y)]y=1, but we cannot use (9.38)

to determine EX2. We can, though, use (9.42) to find EX1, and EX2 through
(9.36), since λ is always smaller than pν1, when pν1 = (1 − p)ν2, due to the
ergodicity condition (9.1). Likewise, for λ = pν1, setting x = 1 in (9.41) gives,
after applying l’Hôpital,[d

dx
P (x, 0)

]
x=1

=
λ

(1 − p)ν1
=

λ

ν1 − λ
,

and we cannot use (9.42) to determine EX1. We can use (9.38) to find EX2,
since (1 − p)ν2 is always smaller than pν1 (when λ = pν1) due to the ergod-
icity condition. We can thus conclude that we can calculate either one of the
integrals (9.40) or (9.44) for all allowed parameter values.

Let us now discuss some issues that arise in computing the performance
measures from the formal solutions of the Riemann–Hilbert boundary value
problems. In Sect. 9.6.1 we discuss how the location of α and β is related to
the set of parameter values for which we can actually determine the perfor-
mance measures. In Sect. 9.6.2 we discuss a way to determine the performance
measures for all allowed parameter values. In Sect. 9.6.3 we discuss how the
integrals involved in computing the performance measures can be determined
numerically. Finally, we present some conclusions in Sect. 9.6.4.

204 MULTIACCESS, RESERVATIONS & QUEUES

9.6.1 Remarks on α and β

For calculating the performance measures described in Sect. 9.6, we have to
evaluate P (0, y) and d

dyP (0, y) in y = 1 or P (x, 0) and d
dxP (x, 0) in x = 1.

We first discuss the first option. The integration constant K1 can be determined
by calculating P (0, 0) from the integral (9.20), and using that P (0, 0) = 1 −
λ/ν1−λ/ν2. The integrals (9.20), (9.40), however, follow from the solution of
a Dirichlet problem that is only defined on or within the unit circle. So, in order
to evaluate the integrals, f(1) should lie on or within the unit circle, which is
the same as requiring 1 to lie on or within the contour L.

The above problem is very common in queueing applications for which the
boundary value technique is applied, see, e.g. Boxma and Groenendijk [24],
Cohen and Boxma [39], p. 360, De Klein [96], p. 89, Feng et al. [66], Mikou
[123], and Mikou et al. [124]. In the present context, a key role is played by
α. In Lemma 9.3 we saw that, when pν1 ≤ (1 − p)ν2 (i.e. r1 ≥ r2), it fol-
lows that α ≥ 1 and thus 1 ∈ L ∪ L+. Hence, for these parameter values
the integrals (9.20), (9.40) can be calculated. To obtain results for parameter
values for which it holds that pν1 > (1 − p)ν2, we might consider analytic
continuations for the functions (9.20), (9.40), see, e.g. Nauta [130]. However,
this would most probably result in numerical difficulties. Alternatively, we can
use the Taylor series expansions of the corresponding functions around some
point in L+, as suggested by Cohen and Boxma [39], p. 360. For a Taylor series
expansion of order n around ŷ ∈ L+, we then have that

P (0, 1) ≈
n∑

k=0

(1 − ŷ)k

k!

[dk

dyk
P (0, y)

]
y=ŷ

. (9.45)

The exact same problem applies for boundary value problem II. In that case,
we have to evaluate the integrals (9.28), (9.44) in x = 1, which is only allowed
when 1 ∈ R ∪ R+. In Lemma 9.6 we have seen that this is the case when pν1

and (1 − p)ν2 are both larger than λ (i.e. r1 < 1 and r2 < 1).
To summarise, we show in Fig. 9.4 how the values of α and β are related

to the parameter values λ, ν1, ν2 (for p = 1/2). So, starting from boundary
value problem I, we can determine the performance measures for parameter
values that fall within areas I and II. By considering boundary value problem
II, we can enlarge this set by area III. For area IV we can apply the Taylor
series expansion. As will be shown in the next section, the use of Taylor series
expansions can be circumvented by considering a third zero-set of the kernel
h1(x, y).

9.6.2 A Third Zero-Set of the Kernel

We now discuss an approach to determine P (0, 1) and [d
dyP (0, y)]y=1 di-

rectly from (9.20), (9.40) despite the fact that α < 1. The approach has been

A Tandem Queue with Coupled Processors 205

I : a ≥ 1, b < 1
II : a ≥ 1, b ≥ 1
III : a < 1, b ≥ 1
IV : a < 1, b < 1

III

III

IV

r1

r2

0 1

1

2

2

Fig. 9.4. Relation between parameter values, and α and β, for p = 1
2

suggested by De Klein [96], p. 89, and makes use of a zero-set of h1(x, y) other
than the ones we have considered so far. By establishing a relation between
P (x, 0) and P (0, y) for zero-pairs (x, y) of this set, we are able to calculate
the performance measures for all allowed parameter values.

The new zero-set is defined by

{(x, y∗(x)) | h1(x, y∗(x)) = 0, |x| = 1}, (9.46)

where y∗(x) is the zero of the kernel with the smallest modulus. From the
function y(x), as given in (9.5), it is easily seen that

y∗(1) = min
(r1

r2
, 1
)
, (9.47)

for which we have the following result:

Lemma 9.9 For r1 = r2 it holds that y∗(1) = 1 = α. For r1
= r2 it holds
that y∗(1) < α.

Proof The first assertion follows immediately from Lemma 9.3. For the second
assertion note that if r1 > r2 it holds that y∗(1) = 1 < α. If r1 < r2 it holds
that

D1(r1/r2) =
[
1 + r1 +

r1

r2
− r2

1

r2

]2(1
r2

)2 − 4
(1

r2

)2
.

Since r1 < r2 implies r1 < 1, we have 1 + r1 + r1/r2 − r2
1/r2 ∈ (−2, 2), and

D1(r1/r2) < 0. So, r1/r2 < x2, and y∗(1) = r1/r2 <
√

r1x2/r2 = α. �

We exploit the result in Lemma 9.9 in the following way. Introducing the
short-hand notation hk(x) := hk(x, y∗(x)), we obtain from (9.1) that

h2(x)P (x, 0) + h3(x)P (0, y∗(x)) + h4(x)P (0, 0) = 0, |x| = 1. (9.48)

206 MULTIACCESS, RESERVATIONS & QUEUES

Setting x = 1 in (9.48) yields

P (1, 0) =
−1

h2(1)

[
h3(1)P (0, y∗(1)) + h4(1)P (0, 0)

]
. (9.49)

Since for r1
= r2 it holds that y∗(1) < α, the value of P (0, y∗(1)) can be
computed directly from (9.20). Hence, for r1 < r2 we cannot obtain P (0, 1)
directly from (9.20), but we can obtain P (1, 0) using (9.49), and find P (0, 1)
through (9.35).

By using a similar approach we can determine [d
dyP (0, y)]y=1 through

(9.40), despite the fact that r1 < r2. We do need some extra results concern-
ing the zero-set (9.46) though. Observe that y∗(1) is of multiplicity 1 unless
r1 = r2, for which y∗(1) is of multiplicity two. We further have

Lemma 9.10 The zero y∗(x) is of multiplicity 1 and contained in the disk
|y| < 1 for every |x| = 1, x
= 1.

Proof For |x| = 1 it holds that h1(x, y) = λx(f(x, y) + g(x, y)) where

f(x, y) :=
(
1 +

1
r1

+
1
r2

− x
)
y, g(x, y) := −

(1
r1

x̄y2 +
1
r2

)
,

and x̄ the complex conjugate of x. We have for |x| = 1, x
= 1,

|f(x, y)| = |1 +
1
r1

+
1
r2

− x||y| >
(1

r1
+

1
r2

)
|y|,

|g(x, y)| ≤ 1
r1
|x̄||y|2 +

1
r2

=
1
r1
|y|2 +

1
r2

.

Then, for all points y on |y| = 1 we have that

|g(x, y)| ≤ 1
r1

+
1
r2

< |f(x, y)|, |y| = 1, |x| = 1, x
= 1,

which implies by Rouché’s theorem, see, e.g. Titchmarsh [162], that f(x, y)+
g(x, y) (and thus h1(x, y)) has as many zeros, counted according to their mul-
tiplicity, inside |y| = 1 as f(x, y). Since f(x, y) has only one zero of multi-
plicity 1 at y = 0, we find that for every x with |x| = 1, x
= 1, h1(x, y) = 0
has one solution inside |y| = 1, i.e. y∗(x). �

From Lemma 9.10 it follows for r1
= r2 and |x| = 1 that[d
dy

h1(x, y)
]
y=y∗(x)

= 0, (9.50)

because otherwise y∗(x) would be of multiplicity 2. From the implicit function
theorem we then have that y∗(x) is differentiable for r1
= r2 and |x| = 1.

A Tandem Queue with Coupled Processors 207

Differentiating h1(x, y∗(x)) = 0 at both sides gives[d
dx

h1(x, y)
]
y=y∗(x)

+
d
dx

y∗(x)
[d
dy

h1(x, y)
]
y=y∗(x)

= 0, (9.51)

and thus

d
dx

y∗(x) = −

[
d
dxh1(x, y)

]
y=y∗(x)[

d
dyh1(x, y)

]
y=y∗(x)

. (9.52)

Consequently, differentiating (9.48) w.r.t. x and setting x = 1 gives[d
dx

P (x, 0)
]
x=1

=
−1

h2(1)

(
h′

2(1)P (1, 0) + h′
3(1)P (0, y∗(1))

+ h′
4(1)P (0, 0) + h3(1)

[d
dx

y∗(x)
]
x=1

[d
dy

P (0, y)
]
y=y∗(1)

)
. (9.53)

Again, since for r1
= r2 it holds that y∗(1) < α, the value of d
dyP (0, y) in

y = y∗(1) can be computed directly from (9.40), and through (9.53), (9.42),
(9.36) and (9.38) we obtain (d/dy)P (0, y) in y = 1. The approach outlined
in this section can also be applied to determine P (1, 0) and (d/dx)P (x, 0) in
x = 1 in case β < 1.

9.6.3 Evaluating the Integrals

We will now describe how the involved integrals can be determined numeri-
cally. For boundary value problem I, we have rewritten the integral (9.20) as
(9.21). The integral (9.40) can be rewritten in a similar way. We will evalu-
ate the integrals (9.21) and (9.40) using the trapezium rule, for which we split
the interval [0, 2π] into K parts of equal length 2π/K. The fact that the whole
integrand including the mapping f(y) is known explicitly allows for a fine sub-
division. For the numerical results to be presented in the next section we have
set K to 250, which guarantees a high level of accuracy.

For boundary value problem II, we need to calculate the integrals (9.28)
and (9.44). We will now outline how these integrals can be computed, along
with the numerical determination of the mapping g0(z). For a more detailed
exposition we refer to Chap. IV.1 of Cohen and Boxma [39].

Step 1: Rewriting the integrals (9.28) and (9.44)
Substitution of w = eiφ into (9.28) yields

P (x, 0) = − i

2π

∫ 2π

0
d(g0(eiφ))

eiφ + g(x)
eiφ − g(x)

dφ + K2, x ∈ R∪R+. (9.54)

208 MULTIACCESS, RESERVATIONS & QUEUES

The integral (9.44) can be rewritten in a similar way, i.e.

d
dx

P (x, 0) = − i

π

∫ 2π

0
d(g0(eiφ))

g′(x)eiφ

(eiφ − g(x))2
dφ, x ∈ R ∪ R+. (9.55)

Step 2: Numerical evaluation of the integrals (9.54) and (9.55)
We will evaluate the integrals (9.54) and (9.55) in x = 1 using the above
rewriting and the trapezium rule, for which we split the interval [0, 2π] into
K parts of equal length 2π/K. From (9.54) and (9.55) we then see that we
need to determine the values of the conformal mapping g0(·) in the points
eiφk , k = 0, 1, . . . , K − 1, with φk = 2πk/K. We further need to determine
g(1) and g′(1).

Step 3: Solving Theodorsen’s integral equation (9.34)
For K points on the unit circle given by their angles

{φ0, φ1, . . . , φK−1},
we need to solve (9.34) to obtain the corresponding points on R, given by their
angles {θ(φ0), θ(φ1), . . . , θ(φK−1)}. For k = 0, 1, . . . , K − 1, we determine
θ(φk) iteratively, see Gaier [69], p. 67, from

θ0(φk) = φk, (9.56)

θn+1(φk) = φk −
∫ 2π

0
log
(

δ(θn(ω))
cos(θn(ω))

)
cot
(

1
2
(ω − φk)

)
dω, (9.57)

where δ(θn(ω)) is determined from, see (9.32),

δ(θn(ω)) − cos θn(ω)
√

m(δ(θn(ω))) = 0, (9.58)

using the Newton-Raphson root-finding procedure. For each step, the integral
in (9.57) is numerically determined by again using the trapezium rule with
K parts of equal length 2π/K. For the iteration, we have used the following
stopping criterion:

max
k∈{0,...,K−1}

|θn+1(φk) − θn(φk)| < 10−6. (9.59)

Finally, it follows from ρ(φ) = δ(φ)/ cos φ that the value of g0(·) in eiφk is
given by

g0(eiφk) =
δ(θ(φk))
cos θ(φk)

eiθ(φk), k = 0, 1, . . . , K − 1. (9.60)

We again set K to 250, although in our experience a far smaller value of K is
already sufficient to reach an acceptable level of accuracy.

A Tandem Queue with Coupled Processors 209

Step 4: Determination of g(1) and g′(1)
g(1) is obtained as the unique solution z of g0(z) = 1 on [0, 1], and can be
determined using (9.33) and Newton-Raphson. g′(1) is given by, see Boxma
and Groenendijk [24],

g′(1)=
[

1
g(1)

+
1
2π

exp
(

1
2π

∫ 2π

0
log
(

δ(θ(ω))
cos(θ(ω))

)
2eiω

(eiω − g(1))2
dω

)]−1

.

(9.61)

We calculate g′(1) by numerically determining the integral (9.60) with the
trapezium rule and K set to 250.

9.6.4 Conclusion

For both boundary value problems, determining the performance measures
comes down to computing real integrals. For boundary value problem I, we
have an explicit expression for the conformal mapping f(y), and so computing
the real integrals becomes a standard exercise. For boundary value problem
II, though, we are not able to derive the required conformal mapping g(x). We
therefore choose to numerically determine its inverse conformal mapping in or-
der to compute the integrals. Hence, using boundary value problem II requires
some additional effort.

In Sect. 9.6.1 we saw that both models were useful in computing the perfor-
mance measures. However, using the approach outlined in Sect. 9.6.2, bound-
ary value problem I can be applied to determine the performance measures
for the complete range of allowed parameter values. Hence, we naturally sug-
gest to use boundary value problem I for computational purposes. If, however,
one could derive an explicit expression for the mapping g(x), boundary value
problem II would be equally suitable.

9.6.5 Some Examples

In this section we present some examples that show the effect of the value of
the parameter p on the performance measures. In Sect. 9.6 we have concluded
that we can determine the performance measures for the whole set of parameter
values {λ, ν1, ν2, p} for which the ergodicity condition (9.1) is satisfied. More-
over, we have seen that part of this set allows for multiple ways to determine
the performance measures. Therefore, we cross-checked all results presented
in this section whenever possible.

Table 9.1 displays the performance measures for a moderate load (P (0, 0) =
1/3). The results for the limiting cases p = 0 and p = 1 are obtained with the
solutions as given in Resing and Örmeci [148]. Obvious observations are that
the fraction of time station 1 is busy, and the mean queue length at station
1, both decrease for higher values of p, and vice versa for station 2. Further

210 MULTIACCESS, RESERVATIONS & QUEUES

Table 9.1. Performance measures for moderate load (P (0, 0) = 1/3)

λ ν1 ν2 p r1 r2 α β P (1, 0) P (0, 1) EX1 EX2

1 3 3 0.00 ∞ 0.33 – – 0.44 0.67 1.33 0.33
1 3 3 0.25 1.33 0.44 1.32 0.86 0.47 0.60 1.25 0.50
1 3 3 0.50 0.67 0.67 1.00 1.15 0.52 0.52 1.02 0.97
1 3 3 0.75 0.44 1.33 0.44 0.86 0.60 0.47 0.68 1.63
1 3 3 1.00 0.33 ∞ – – 0.67 0.44 0.50 2.00

1 6 2 0.00 ∞ 0.50 – – 0.50 0.50 1.25 0.50
1 6 2 0.25 0.67 0.67 1.00 1.15 0.61 0.43 0.76 1.16
1 6 2 0.50 0.33 1.00 0.46 1.00 0.73 0.40 0.38 1.67
1 6 2 0.75 0.22 2.00 0.17 0.70 0.80 0.39 0.26 1.83
1 6 2 1.00 0.17 ∞ – – 0.83 0.39 0.20 1.90

1 2 6 0.00 ∞ 0.17 – – 0.39 0.83 1.58 0.17
1 2 6 0.25 2.00 0.22 1.57 0.70 0.39 0.80 1.57 0.22
1 2 6 0.50 1.00 0.33 1.37 1.00 0.40 0.73 1.54 0.34
1 2 6 0.75 0.67 0.67 1.00 1.15 0.43 0.61 1.42 0.83
1 2 6 1.00 0.50 ∞ – – 0.50 0.50 1.00 2.50

Table 9.2. Performance measures for high load (P (0, 0) = 0.1)

λ ν1 ν2 p r1 r2 α β P (1, 0) P (0, 1) EX1 EX2

1.8 4 4 0.00 ∞ 0.45 – – 0.15 0.55 6.53 0.45
1.8 4 4 0.25 1.80 0.60 1.22 0.75 0.16 0.42 6.34 0.82
1.8 4 4 0.50 0.90 0.90 1.00 1.04 0.22 0.22 4.63 4.23
1.8 4 4 0.75 0.60 1.80 0.41 0.75 0.42 0.16 1.42 10.66
1.8 4 4 1.00 0.45 ∞ – – 0.55 0.15 0.82 11.86

1.8 6 3 0.00 ∞ 0.60 – – 0.16 0.40 6.60 0.60
1.8 6 3 0.25 1.20 0.80 1.09 0.90 0.20 0.23 5.78 1.83
1.8 6 3 0.50 0.60 1.20 0.60 0.90 0.45 0.15 1.31 8.53
1.8 6 3 0.75 0.40 2.40 0.23 0.65 0.61 0.13 0.64 9.54
1.8 6 3 1.00 0.30 ∞ – – 0.70 0.13 0.43 9.86

1.8 3 6 0.00 ∞ 0.30 – – 0.13 0.70 6.90 0.30
1.8 3 6 0.25 2.40 0.40 1.38 0.65 0.13 0.61 6.85 0.82
1.8 3 6 0.50 1.20 0.60 1.19 0.90 0.15 0.45 6.67 4.23
1.8 3 6 0.75 0.80 1.20 0.73 0.90 0.23 0.20 3.57 10.26
1.8 3 6 1.00 0.60 ∞ – – 0.40 0.16 1.50 16.38

note that EX1 + EX2 increases as a function of p. Table 9.2 displays the per-
formance measures for a high load (P (0, 0) = 0.1), from which a similar
conclusion can be drawn.

For procedures that require two sequential stages, balancing either the mean
queue length or the mean workload might be of interest, see, e.g. Andradottir
et al. [6]. In Tables 9.1 and 9.2 we see that the difference in mean queue lengths
at the two stations is strongly influenced by p. As an example, we have plotted

A Tandem Queue with Coupled Processors 211

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fig. 9.5. Mean queue lengths for λ = 1, ν1 = 6, ν2 = 2, and p ∈ [0, 1]

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

p

Fig. 9.6. Mean workloads for λ = 1.8, ν1 = 3, ν2 = 6, and p ∈ [0, 1]

in Fig. 9.5 both mean queue lengths for λ = 1, ν1 = 6, ν2 = 2, and p running
from 0 to 1. The imbalance is minimal when EX1 = EX2, i.e. p ≈ 0.18.
Observe that the optimal value of p does not correspond to the solution of
pν1 = (1 − p)ν2, which is 0.25.

An example of the influence of p on the mean workloads 1
ν1

EX1 and 1
ν2

EX2

is given by Fig. 9.6, which shows the mean workloads for λ = 1.8, ν1 =
3, ν2 = 6, and p running from 0 to 1. We observe that the imbalance in work-
loads is minimal when 1

ν1
EX1 = 1

ν2
EX2, i.e. p ≈ 0.72.

Chapter 10

A TWO-STATION NETWORK

WITH COUPLED PROCESSORS

In Chap. 9 we have considered the two-stage tandem queue with coupled
processors. We have shown that the pgf of the joint stationary queue length
distribution can be found using the theory of boundary value problems.

In this chapter we present a more general model of a two-station network
with coupled processors. This network consists of two single-server stations,
Poisson arrival streams, exponential service times and probabilistic routing.
For the network with coupled processors, we will show that the pgf of the
joint stationary queue length distribution can again be found using the the-
ory of boundary value problems. The network provides a general framework
which, among other things, covers and hence generalises two key models: The
two-stage tandem queue and two parallel queues. The second model has been
studied by Fayolle and Iasnogorodski [61]. Their paper has become a classic
one, since it introduced the technique of boundary value problems to the field
of queueing theory.

10.1 Introduction

In recent years, the coupled-processors discipline has regained attention. This
is due to the fact that the coupled-processors discipline incorporates the gen-
eralised processor sharing discipline (GPS) as a special case. GPS is a popular
scheduling discipline in modern communication networks, since it provides
a way to achieve service differentiation among different types of customers.
The recent work on GPS is focused on deriving characteristics of the queue
length and delay distributions, particularly on deriving the asymptotic be-
haviour of tail probabilities, see Van Uitert [167] and the references therein,
and less on deriving a transform solution of the stationary distribution, as
Fayolle and Iasnogorodski [61] did. It is widely recognised that obtaining
transform solutions for GPS, or coupled-processors, models with more than

214 MULTIACCESS, RESERVATIONS & QUEUES

two customer classes is extremely hard. Cohen [36] obtained a partial solution
for a three-class GPS model, but up to this day that seems to be as far as it can
be taken. The two-station network studied in this chapter is in fact a description
of a collection of two-dimensional models with exponential service times for
which an analytical solution can be obtained in terms of a transform.

The remainder of this chapter is structured as follows. In Sect. 10.2 we give
the model description and derive a functional equation for the joint pgf of the
stationary queue length distribution. In Sect. 10.3 we derive expressions and
relations for various performance measures. In Sect. 10.4 we treat the case of
preemptive priority for one of the stations. We show that from the functional
equation the joint pgf of the stationary queue length can be obtained without
invoking the theory of boundary value problems. For the GPS case, we do
need the theory of boundary value problems, as presented in Sect. 10.5. We
end this chapter with some conclusions and suggestions for further research in
Sect. 10.6.

10.2 Model Description

Consider an open queueing network with two single-server stations, where
jobs arrive externally at station j according to a Poisson process with rate λj ,
j = 1, 2. Every time a job visits station j, j = 1, 2, it requires an exponen-
tial amount of work with parameter νj . The total service capacity of the two
stations together is constant. When both stations are nonempty, the service ca-
pacity is divided between the two stations according to fixed proportions, p1

and p2, p1 +p2 = 1, and hence the departure rates at station 1 and 2 then equal
p1ν1 and p2ν2, respectively. If one of the stations is empty, the total service ca-
pacity of the stations is allocated to the nonempty station. Hence, the departure
rate at that station, station j say, is then temporarily increased to νj .

Figure 10.1 displays the network. We denote by rij the probability that a job
moves to station j after receiving service at station i. After receiving service at
station 1, a job will join the queue of station 2 w.p. r12, or leave the system w.p.
1− r12. Similarly, after receiving service at station 2, a job will join the queue

r12

¸2

¸1 1−r12

1−r21

r21

Fig. 10.1. Two-station network with probabilistic routing and coupled processors

A Two-Station Network with Coupled Processors 215

of station 1 w.p. r21, or leave the system w.p. 1− r21. We assume that r11 = 0
and r22 = 0, which can be done without loss of generality when modelling the
queue lengths, since rii > 0 implies that the service time of a job at station i is
a geometrically distributed sum of exponentially distributed random variables,
which is again exponentially distributed. Note that the network model reduces
to the tandem queue covered in Chap. 9 by choosing λ2 = r21 = 0 and r12 = 1.

Denoting by γj the throughput of jobs at station j, we have that γ1 = λ1 +
γ2r21 and γ2 = λ2 + γ1r12, which gives

γ1 =
λ1 + r21λ2

1 − r12r21
, γ2 =

λ2 + r12λ1

1 − r12r21
. (10.1)

Denote by Xj(t) the number of jobs at station j at time t. Under the condition,

ρ1 + ρ2 < 1, (10.2)

where ρj = γj/νj , the two-dimensional Markov process

{(X1(t), X2(t)), t ≥ 0} (10.3)

has a unique stationary distribution. This can be explained by the fact that,
independent of p1 and p2, the two stations together always work at capacity 1,
if there is work in the system, and that ρ1 + ρ2 equals the amount of work
brought into the system per time unit. Note that in case the servers are not
coupled, we have a standard two-station open Jackson network, for which the
stationary joint queue length distribution possesses the following product form

lim
t→∞P(X1(t) = n1, X2(t) = n2) = (1 − ρ1)ρn1

1 (1 − ρ2)ρn2
2 . (10.4)

For the case with coupled processors, such a product form fails to hold.
Let us denote by π(n, k) the stationary probability of having n jobs at sta-

tion 1 and k jobs at station 2. The following set of balance equations can then
be derived, with λ := λ1 + λ2:

λπ(0, 0) = ν2(1 − r21)π(0, 1) + ν1(1 − r12)π(1, 0),
(λ + ν1)π(1, 0) = λ1π(0, 0) + ν1(1 − r12)π(2, 0) + p2ν2(1 − r21)π(1, 1)

+ν2r21π(0, 1),
(λ + ν2)π(0, 1) = λ2π(0, 0) + ν2(1 − r21)π(0, 2) + p1ν1(1 − r12)π(1, 1)

+ν1r12π(1, 0),

and for n ≥ 1, k ≥ 1

(λ + ν1)π(n, 0) = λ1π(n − 1, 0) + ν1(1 − r12)π(n + 1, 0)
+p2ν2(1 − r21)π(n, 1) + p2ν2r21π(n − 1, 1),

(λ + ν2)π(0, k) = λ2π(0, k − 1) + ν2(1 − r21)π(0, k + 1)
+p1ν1(1 − r12)π(1, k) + p1ν1r12π(1, k − 1),

216 MULTIACCESS, RESERVATIONS & QUEUES

(λ + p1ν1 + p2ν2)π(1, 1) = λ1π(0, 1) + λ2π(1, 0) + ν1r12π(2, 0)
+ν2r21π(0, 2) + p1ν1(1 − r12)π(2, 1)

+p2ν2(1 − r21)π(1, 2),

(λ + p1ν1 + p2ν2)π(n, 1) = λ1π(n − 1, 1) + λ2π(n, 0)
+ν1r12π(n + 1, 0) + p2ν2r21π(n − 1, 2)

+p1ν1(1 − r12)π(n + 1, 1)

+p2ν2(1 − r21)π(n, 2),

(λ + p1ν1 + p2ν2)π(1, k) = λ2π(1, k − 1) + λ1π(0, k)

+ν2r21π(0, k + 1) + p1ν1r12π(2, k − 1)

+p2ν2(1 − r12)π(1, k + 1)

+p1ν1(1 − r12)π(2, k).

We define the joint probability generating function

P (x, y) =
∑
n≥0

∑
k≥0

π(n, k)xnyk, |x| ≤ 1, |y| ≤ 1,

which is regular for |x| < 1, continuous for |x| ≤ 1 for every fixed y, and
similarly for x and y interchanged. From the balance equations it follows that
P (x, y) satisfies the following functional equation

h1(x, y)P (x, y) = h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0),
(10.5)

where

h1(x, y) = (λ + p1ν1 + p2ν2)xy − λ1x
2y − λ2xy2 − p1ν1r12y

2

−p2ν2r21x
2 − p1ν1(1 − r12)y − p2ν2(1 − r21)x,

h2(x, y) = p2[(ν2 − ν1)xy + ν1r12y
2 − ν2r21x

2

+ν1(1 − r12)y − ν2(1 − r21)x],

h3(x, y) = −p1[(ν2 − ν1)xy + ν1r12y
2 − ν2r21x

2

+ν1(1 − r12)y − ν2(1 − r21)x],

h4(x, y) = p2ν1(xy − r12y
2 − (1 − r12)y)

+p1ν2(xy − r21x
2 − (1 − r21)x).

Observe that the four functions above are all polynomials of degree 2 in both
x and y, and that h2(x, y) = −(p2/p1)h3(x, y).

A Two-Station Network with Coupled Processors 217

10.3 Performance Measures

In this chapter we derive expressions for two performance measures: The frac-
tion of time the stations are empty and the mean stationary queue length at the
stations. The fractions of time stations 1 and 2 are empty, given by P (0, 1) and
P (1, 0) respectively, are related as

γ1 = ν1(P (1, 0) − P (0, 0)) + p1ν1(1 − P (1, 0) − P (0, 1) + P (0, 0)),
γ2 = ν2(P (0, 1) − P (0, 0)) + p2ν2(1 − P (1, 0) − P (0, 1) + P (0, 0)).

These equations stem from the following reasoning, similar to the reasoning on
p. 201: P (1, 0)−P (0, 0) is the fraction of time station 1 is nonempty while sta-
tion 2 is empty, and 1−P (1, 0)−P (0, 1)+P (0, 0) is the fraction of time both
stations are nonempty. Thus, the first equation states that, for station 1, the ar-
rival rate equals the departure rate. Similarly, the second equation corresponds
to the equality of arrival-departure rates for station 2. Note that the equations
are dependent and therefore do not yield an explicit solution for P (1, 0) and
P (0, 1).

The mean stationary queue lengths at both stations, to be denoted by EX1

and EX2, are also related. First, we give the following definition:

Definition 10.1 We define by B[π1;π2] a random variable having a two-
phase phase-type distribution, starting from phase 1 or phase 2 w.p. π1 and
π2, respectively. The transition rate out of phase 1 (2) equals ν1 (ν2). After
completing phase 1 (2), the process may continue with phase 2 (1) w.p. r12

(r21), or enters the absorbing state.

The moments of B[π1;π2] are given by, see Asmussen [7], Proposition 4.1,
p. 83,

E(Bk
[π1;π2]) = (−1)kk!

[
π1 π2

] [−ν1 ν1r12

ν2r21 −ν2

]−k [1
1

]
. (10.6)

We then have the following result:

Lemma 10.1 The mean queue lengths at both stations are related in the
following way:

EX1E(B[1;0]) + EX2E(B[0;1]) =
ρ

1 − ρ
[2E(B[λ1/λ;λ2/λ])]

−1
E(B2

[λ1/λ;λ2/λ]),

(10.7)
where ρ = λE(B[λ1/λ;λ2/λ]).

Proof The left-hand side of (10.7) counts the mean amount of work in the sys-
tem by multiplying the mean number of jobs by the mean service time they still

218 MULTIACCESS, RESERVATIONS & QUEUES

require before leaving the system. The right-hand side of (10.7) corresponds to
the mean amount of work in an M/G/1 queue with Poisson arrivals with rate
λ and service times distributed as B[λ1/λ;λ2/λ], see Cohen [35], p. 256. �

By (10.7) it suffices to calculate either EX1 or EX2 to obtain them both.
We will show how EX2 follows from the solution of the Riemann–Hilbert
boundary value problem discussed in Sect. 10.5.

When setting x = 1 in (10.4), we can divide both sides by (y− 1), and after
rewriting we obtain

P (1, y) =
ν2 + ν1r12y

p2ν2 − (λ2 + p1ν1r12)y
(p2P (1, 0) − p1P (0, y))

+
p1ν2 − p2ν1r12y

p2ν2 − (λ2 + p1ν1r12)y
P (0, 0). (10.8)

Differentiating (10.8) w.r.t. y yields

d
dy

P (1, y) =
ν1ν2r12 + ν2λ2

(p2ν2 − (λ2 + p1ν1r12)y)2
(p2P (1, 0) − p1P (0, y))

+
p1ν2λ2 + (2p1 − 1)ν1ν2r12

(p2ν2 − (λ2 + p1ν1r12)y)2
P (0, 0)

− p1(ν2 + ν1r12y)
p2ν2 − (λ2 + p1ν1r12)y

d
dy

P (0, y). (10.9)

Using

p2P (1, 0) − p1P (0, 1) =
p2γ1

ν1
− p1γ2

ν2
+ (1 − 2p1)P (0, 0), (10.10)

we set y = 1 in (10.9) and obtain after some rewriting (for p2ν2
= λ2 +
p1ν1r12)

E(X2) =
[d
dy

P (1, y)
]
y=1

=
γ2

p2ν2 − (λ2 + p1ν1r12)

− p1(ν2 + ν1r12)
p2ν2 − (λ2 + p1ν1r12)

[d
dy

P (0, y)
]
y=1

. (10.11)

Thus, to determine EX1 and EX2, we need to compute [d
dyP (0, y)]y=1. Note

that for p1 = p, r12 = 1, r21 = 0 and λ2 = 0, (10.11) reduces to (9.38).
The case that p2ν2 = λ2 +p1ν2r12 is special. Substituting y = 1 into (10.8)

yields after applying l’Hôpital’s rule:

1 =
γ1r12 + λ2 − p2ν2 − (ν2 − λ2)

[
d
dyP (0, y)

]
y=1

−λ2 − p1ν1r12
. (10.12)

A Two-Station Network with Coupled Processors 219

Since γ1r12 + λ2 = γ2 this gives after some rewriting[d
dy

P (0, y)
]
y=1

=
γ2

ν2 − λ
. (10.13)

10.4 Preemptive Priority

When the proportion of the service capacity p1 is set to one, the jobs at station 1
have preemptive priority over the jobs at station 2. For this case the generating
function P (x, y) can be obtained without employing the theory of boundary
value problems, as will be shown in this section.

The functional equation (10.4) then reduces to

h1(x, y)P (x, y) = h3(x, y)P (0, y) + h4(x, y)P (0, 0). (10.14)

Let x = ξ(y) denote the unique solution of h1(x, y) = 0 within the unit circle.
That is

ξ(y) =
ν1(1 − r12 + r12y)

λ1(1 − ξ(y)) + ν1 + λ2(1 − y)
. (10.15)

For x = ξ(y), the right-hand side of (10.14) should equal zero, yielding

P (0, y) =
ν2(r21ξ(y) − y + 1 − r21)P (0, 0)

y(λ1ξ(y) − λ − ν2) + ν2(r21ξ(y) + 1 − r21) + λ2y2
. (10.16)

Since P (0, 0) = 1−ρ1 −ρ2, substituting (10.16) into (10.14) gives an expres-
sion for P (x, y) in terms of ξ(y) only, i.e.

P (x, y) =
1

h1(x, y)

[h3(x, y)ν2(r21ξ(y) − y + 1 − r21)P (0, 0)
y(λ1ξ(y) − λ − ν2) + ν2(r21ξ(y) + 1 − r21) + λ2y2

+h4(x, y)P (0, 0)
]
. (10.17)

We will now show that (10.15) and (10.16) have probabilistic interpretations.
Let N represent the number of jobs served during a busy period of station 1,

and Y the number of external arrivals at station 2 (with rate λ2) during a busy
period of station 1. Then, whenever station 1 empties, the service at station 2
is restarted, and a certain number of jobs has arrived there. Denote this number
by H , which may be represented as

H = Y +
N∑

i=1

Zi, (10.18)

220 MULTIACCESS, RESERVATIONS & QUEUES

where Y and N independent, and Zi = 1 w.p. r12 and Zi = 0 w.p. 1 − r12.
With B1 the service time of a job at station 1, the pgf of H is given by

H(y) =
∫ ∞

t=0
E(yH |B1 = t)ν1e

−ν1tdt

=
∫ ∞

t=0

∞∑
n=0

(λ1t)n

n!
e−λ1t

∞∑
k=0

(λ2ty)k

k!
e−λ2t

×(1 − r12 + r12y) · E(yH1+···+Hn)ν1e
−ν1tdt

= (1 − r12 + r12y)ν1

∫ ∞

t=0
et(λ1H(y)−λ+λ2y−ν1)dt,

which matches (10.15).
To explain (10.16), we introduce the random vector (Y1, Y2), where Y1 and

Y2 represent the stationary number of jobs at stations 1 and 2, respectively, at
a point in time during a busy period of station 1. With Q(x, y) the joint pgf of
(Y1, Y2), it can be shown that

Q(x, y) =
x(ν1 − λ1)(x − H(y))

(λ + ν1)x − λ1x2 − (1 − r12)ν1 − r12ν1y − λ2xy
. (10.19)

With X
(i)
2 the stationary number of jobs at station 2 during idle periods of

station 1, we have that

(X1, X2) =

⎧⎪⎨⎪⎩
(0, X

(i)
2), w.p. q1,

(0, X
(i)
2) + (Y1, Y2), w.p. q2,

(0, X
(i)
2 − 1|X(i)

2 > 0) + (Y1, Y2), w.p. q3,

(10.20)

where q1, q2, q3 denote the probabilities that an arbitrary time point falls within
an idle period of station 1, within a busy period of station 1 that is started with
an external arrival to station 1, and within a busy period of station 1 that is
started with a job coming from station 2, respectively. That is,

q1 =1−ρ1, q2 =ρ1
λ1(1 − ρ1)

λ1(1 − ρ1) + ν2r21ρ2
, q3 =ρ1

ν2r21ρ2

λ1(1 − ρ1) + ν2r21ρ2
.

From (10.20) we see that

P (x, y)=q1
P (0, y)
P (0, 1)

+q2
P (0, y)
P (0, 1)

Q(x, y)+q3
1
y

(P (0, y)−P (0, 0)
P (0, 1)−P (0, 0)

)
Q(x, y),

(10.21)

which, after some lengthy calculations, can be shown to be equal to (10.16).
The above derivation of P (x, y) can be extended to generally distributed

service times, since in that case the decomposition in (10.20) continues to hold.

A Two-Station Network with Coupled Processors 221

10.5 Boundary Value Problem

From now on we assume that p1
= 0, p2
= 0. In the analysis of the func-
tional equation (10.4) a crucial role is played by the kernel h1(x, y). Due to
the regularity properties of P (x, y), for each pair (x, y) on and within the unit
circle for which h1(x, y) equals zero, the right-hand side of (10.4) must vanish.
This provides us with a relation between the unknown functions P (0, y) and
P (x, 0). Blanc [18] has studied the transient behaviour of the two-station net-
work without coupled processors. For this model, the kernel h1(x, y) is of the
exact same form, and most of the results presented in this section also follow
from his work.

Observe that h1(x, y) is for each x a polynomial of degree 2 in y, i.e.

h1(x, y) = a(x)y2 + b(x)y + c(x), (10.22)

where

a(x) = −λ2x − p1ν1r12,

b(x) = (λ + p1ν1 + p2ν2)x − λ1x
2 − p1ν1(1 − r12),

c(x) = −p2ν2r21x
2 − p2ν2(1 − r21)x.

For every x, there are two possible values of y, y1(x) and y2(x) say, such
that h1(x, y1(x)) = h1(x, y2(x)) = 0. These values can be described by the
two-valued function

y(x) =
1

2a(x)
(−b(x) ±

√
D(x)), (10.23)

where
D(x) = b2(x) − 4a(x)c(x).

Lemma 10.2 The algebraic function y(x), defined by h1(x, y(x)) = 0, has
four real branch points 0 ≤ x1 < x2 ≤ 1 < x3 < x4.

Proof The branch points of y(x) are zeros of the discriminant D(x). We have
that D(0) = (p1ν1(1− r12))2 and D(1) = (λ2 + p1ν1r12 − p2ν2)2. Assuming
D(0), D(1) and λ1 larger than zero, we have that D(x) > 0 as x ↓ 0, x = 1
and x → ∞. On the other hand, the function b(x) is negative as x ↓ 0 and
x → ∞, but positive at x = 1. Hence, b(x) has one zero in the interval (0, 1),
and one zero in the interval (1,∞). At these points, D(x) = −4a(x)c(x) < 0.
The remaining cases are left to the reader. �

For later use, we now study the mapping y(x) for x ∈ [x1, x2] in some more
detail. This mapping can be shown to give rise to a smooth and closed contour
L, as specified in the next lemma.

222 MULTIACCESS, RESERVATIONS & QUEUES

Lemma 10.3 For each x ∈ [x1, x2], y(x) lies on the closed contour L, which
is symmetric with respect to the real line. For p12 = p21 = 0, L is defined by
|y(x)|2 = p2ν2/λ2. Otherwise, |y(x)|2 can be written as a function of Re(y),
and

|y|2 ≤ c(x2)
a(x2)

. (10.24)

Proof For x ∈ [x1, x2], D(x) is negative, so y1(x) and y2(x) are complex
conjugates. It also follows that |y(x)|2 = c(x)/a(x), which together with

d
dx

[c(x)
a(x)

]
=

p2ν1r12(1 − r21 + 2r21x + r21λ2x
2)

p1ν1r12 + λ2x
(10.25)

being nonnegative for x ∈ (0,∞) proves (10.24).
We can further solve |y(x)|2 = c(x)/a(x) as a function of x, and denote the

solution that lies within [x1, x2] by x̃(y), i.e.

x̃(y) :=
λ2|y|2 − p1ν1(1 − r21)

2p2ν2r21
(10.26)

−√(p1ν1(1 − r21) − λ2|y|2)2 + 4p1ν1r12p2ν2r21|y|2
2p2ν2r21

.

So x̃(y) is in fact the one-valued inverse function of y(x). For each y ∈ L it
then holds that

Re(y) =
−b(x̃(y))
2a(x̃(y))

. (10.27)

Solving (10.27) as a function of |y(x)|2 then gives an expression for |y(x)|2 in
terms of Re(y). �

We will henceforth denote the interior of L by L+, and set α := y(x2) =
c(x2)/a(x2), representing the point on L with the largest modulus.

We will now show how the zero-set leads to a Riemann–Hilbert problem for
the function P (0, y).

Lemma 10.4 The function P (0, y) is regular in the domain L+ and satisfies
for y ∈ L the condition

Im(P (0, y)) = Im
(
− P (0, 0)

h4(x̃(y), y)
h3(x̃(y), y)

)
. (10.28)

Proof For zero-pairs (x, y) of the kernel for which P (x, y) is finite we have

h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0) = 0, (10.29)

A Two-Station Network with Coupled Processors 223

from which it follows that

P (0, y) =
1 − p

p
P (x, 0) − h4(x, y)

h3(x, y)
P (0, 0). (10.30)

Thus, (10.28) follows from the fact that P (x, 0) is real for x ∈ [x1, x2]. If
α ≤ 1, L lies entirely within the unit circle. Hence, P (0, y) is regular in L+.
If α > 1, P (0, y(x)) can be continued analytically over the interval [x1, x2]
via (10.29), because P (x, 0) is regular on this interval. Hence, the analytic
continuation of P (0, y) is finite at y = y(x2). Because P (0, y) has a power
series expansion at y = 0 with positive coefficients, this implies that P (0, y)
is regular for |y| < y(x2) and hence in L+. �

Lemma 10.4 shows that determining P (0, y) reduces to the following
Riemann–Hilbert boundary value problem on the contour L: Determine a func-
tion P (0, y) such that

1. P (0, y) is regular for y ∈ L+ and continuous for y ∈ L+ ∪ L.

2. Re (iP (0, y)) = χ(y), for y ∈ L,

where

χ(y) = Im
(
P (0, 0)

h4(x(y), y)
h3(x(y), y)

)
.

As done before, we transform the boundary condition (10.28) to a condition
on the unit circle, see, e.g. Muskhelishvili [129], p. 108. Denote the unit circle
by C and its interior by C+. We introduce the conformal mapping:

z = f(y) : L+ → C+, (10.31)

and its inverse
y = f0(z) : C+ → L+. (10.32)

Using these mappings, we can reduce the Riemann–Hilbert problem on L to
the following problem: Determine a function G(z) such that

1. G(z) is regular for z ∈ C+ and continuous for z ∈ C ∪ C+.

2. Re (iG(z)) = χ̄(z), for z ∈ C, where χ̄(z) = χ(f0(z)).

The above problem is known as the Dirichlet problem on a circle. Its solu-
tion is given by, see Muskhelishvili [129], p. 108,

G(z) = − 1
2π

∮
C

χ̄(w)
w + z

w − z

dw

w
+ K1, z ∈ C ∪ C+, (10.33)

224 MULTIACCESS, RESERVATIONS & QUEUES

with K1 some real constant. In this way, P (0, y) = G(f(y)) has been formally
determined as

P (0, y) = − 1
2π

∮
C

χ̄(w)
w + f(y)
w − f(y)

dw

w
+ K1, y ∈ L ∪ L+. (10.34)

In the general case, in order to evaluate χ̄(w), the mapping f0(z) should be
determined using the procedure as described in Sect. 9.5. The procedure con-
sists of finding a fixed number of boundary correspondence points by numer-
ically solving Theodorsen’s integral equation. Exceptions are the case that
r12 = 1, r21 = λ2 = 0, see Remark 9.1, and the case of two parallel queues
discussed below.

10.5.1 The Case r12 = r21 = 0

In case r12 = r21 = 0, there is no routing of customers between the stations,
and the network is reduced to two parallel queues. As mentioned before, this
model has been analysed in Fayolle and Iasnogorodski [61]. Since the contour
L is in this case a circle, |y(x)|2 = p2ν2/λ2, the mappings f(z) and f0(z) are
simply given by

f(y) =
y√

p2ν2/λ2

, f0(y) = y
√

p2ν2/λ2. (10.35)

It then readily follows that, for y ∈ L ∪ L+,

P (0, y) = − 1
2π

∮
C

χ(w
√

p2ν2/λ2)
w + f(y)
w − f(y)

dw

w
+ K1

= − i

2π

∫ π

−π
χ(eiφ

√
p2ν2/λ2)

eiφ + f(y)
eiφ − f(y)

dφ + K1.

(10.36)

The case r12 = r21 = 0 is the only situation for which we cannot specify the
inverse function x̃(y) according to (10.26). Instead, we can use the fact that L
is a circle to derive x̃(y). We start from the observation that for the zero-pairs
(x, y) of the kernel h1(x, y) it holds

(λ + p1ν1 + p2ν2)x − λ1x
2 − λ2xy − p1ν1 − p2ν2

x

y
= 0. (10.37)

Also, for each y ∈ L we have

y =
√

p2ν2

λ2
eiφ =

√
p2ν2

λ2
(cos φ + i sinφ), (10.38)

A Two-Station Network with Coupled Processors 225

for some φ ∈ [0, 2π]. Plugging (10.38) into (10.37) and solving for x gives two
possible outcomes

x1(φ) =
γ −

√
γ2 − 4p1ν1λ1

2λ1
, x2(φ) =

γ +
√

γ2 − 4p1ν1λ1

2λ1
, (10.39)

where γ := λ + p1ν1 + p2ν2 − 2
√

p2ν2λ2 cos φ. It is straightforward to see
that x1(φ) ∈ [x1, x2] for all φ ∈ [0, 2π]. Therefore, the inverse function x̃(y)
is for all y ∈ L specified by

x̃(eiφ
√

p2ν2/λ2) = x1(φ). (10.40)

10.6 Conclusion and Further Research

For the two-station open queueing network with Poisson arrivals, exponential
service times, and coupled processors, we have shown that the pgf of the joint
stationary queue length distribution can be found using the theory of boundary
value problems.

Calculating the performance measures described in Sect. 10.3 involves com-
putational issues as described in Sect. 9.6 for the tandem queue. As for the tan-
dem queue, it is crucial to determine either the mapping f(z) or its inverse
mapping f0(z). If no explicit description of either mapping is available, the
inverse mapping f0(z) can be determined numerically using the procedure de-
scribed in Sect. 9.5. So far, we have not been able to derive an explicit descrip-
tion for f(z) or f0(z), leaving it as a challenging topic for further research.

Next to coupled processors, we introduced in Sect. 2.4 a scheduling disci-
pline referred to as partial coupling, which, in the more general context of
this chapter, would imply the following. Whenever both queues are nonempty,
the capacity is divided among stations 1 and 2 according to fixed fractions.
Whenever queue 1 is empty, all capacity goes to station 2. When queue 2 is
empty, however, the capacity of station 1 is not increased. Partial coupling is
an example of a non-work-conserving scheduling discipline. More generally,
we could describe the class of non-work-conserving scheduling disciplines as
follows. When both stations are nonempty, the service rate of station j is equal
to νj . If one of the stations becomes empty, the service rate at the other station
changes from νj to ν∗

j , where ν∗
j
= ν1 + ν2 for some j = 1, 2.

For the two-station open queueing network with Poisson arrivals, exponen-
tial service times, and a non-work-conserving scheduling discipline, again a
Riemann–Hilbert boundary value problem can be formulated on some contour
M (with M+ the interior of M): Determine the function P (0, y) such that

1. P (0, y) is regular for y ∈ M+ and continuous for y ∈ M+ ∪ M .

2. Re (p(y)P (0, y)) = q(y), for y ∈ M .

226 MULTIACCESS, RESERVATIONS & QUEUES

Note that due to the function p(y), this is a more general Riemann–Hilbert
boundary value problem than those we have encountered earlier, in which case
p(y) = 1. Solving this more general Riemann–Hilbert boundary value problem
requires a slightly more complicated technique, as explained in Mushkelisvili
[129], p. 100, and Cohen and Boxma [39], p. 56. A detailed study of this more
general Riemann–Hilbert boundary value problem is an interesting topic for
further research.

PART V

EPILOGUE

Chapter 11

CABLE NETWORKS REVISITED

Reservation procedures consist of two phases: A request phase and a data-
transmission phase. In the previous chapters, we have proposed models for
the delay in the request phase, see Chap. 4, and for the delay in the data-
transmission phase, see Chaps. 7 and 8. Along the way, we have made some
suggestions to improve the standard algorithms to schedule the reservation pro-
cedure.

In this chapter, we tie our insights together by combining the models to
derive an approximation of the total average packet delay in a reservation
procedure. We also combine the proposed scheduling improvements into one
‘enhanced’ scheduling strategy. Then we present quantitative results for two
different objectives. Firstly, we compare the approximation of the total average
packet delay with delay figures obtained by system simulations for cable net-
works. Thus, we assess the extent to which our approximation has numerical
significance for cable networks. Secondly, we compare the delay when using
the enhanced reservation procedure to the delay when using a more standard
scheduling. This enables us to quantify the effect of the scheduling improve-
ments suggested in this monograph.

11.1 Introduction

In the previous chapters, we have proposed models that are useful in the analy-
sis of a reservation procedure, where the requests are carried out in contention
via a contention tree. In particular, we have used modifications of the repairman
model to approximate the request delay in Chap. 4. The delayed bulk service
queue was proposed in Chap. 8 as an appropriate model for the data queue of
the reservation procedure.

Along with these models, we have made some suggestions to improve the
standard algorithms for the reservation procedure. Specifically, in Sect. 4.2.1

230 MULTIACCESS, RESERVATIONS & QUEUES

we proposed scheduled access as a channel access protocol that is better than
the more common access protocols of blocked and free access. In Sect. 8.1.1, a
bandwidth allocation strategy was outlined that guarantees a certain minimum
number of slots, c, per frame to the reservation process. In this strategy, c was
determined on the basis of the total traffic intensity rather than fixed a priori.

These models were motivated by the use of reservation procedures in cable
networks, and by the perceived deficiencies of the performance models that
have been proposed for this application. At least qualitatively, we have been
successful in this respect. Our model does capture a finite-population effect,
via the approximation to the request delay (4.10) and incorporates a scheduling
effect, see Figs. 8.6, 8.8, 8.10, and 8.12.

In this chapter, we tie the two models together, via some back-of-the-
envelope calculations, and give an approximation to the total average packet
delay in a reservation procedure. Moreover, we combine the proposed schedul-
ing improvements into one scheduling strategy, which we will call the en-
hanced reservation procedure.

The chapter is organised as follows. In Sect. 11.2, we detail the traffic model,
and in Sect. 11.3 we give the calculations that lead to an approximation to the
total average packet delay. In Sect. 11.4, we carry out some numerical exper-
iments that compare the proposed models for the mean delay with results ob-
tained by simulation. Moreover, we quantify the effect of the improvements.
These results suggest a number of directions for further research which we
summarise in Sect. 11.5.

11.2 Traffic Model

We consider a very simple traffic model, that was also used in the simulations
described in Sect. 1.4. In particular, we assume the following set-up:

The population consists of N stations.

The stations generate traffic according to independent Poisson processes
with rate λ = Λ/N .

The contention resolution is carried out by contention trees with one of the
channel access protocols that were described in Sect. 4.2: Blocked access,
free access, or scheduled access.

The total packet delay consists of two parts: The request delay and the data-
transmission delay, corresponding to the two phases of the reservation proce-
dure. To approximate the request delay, we use the results from Chap. 4. To
approximate the data-transmission delay, we build upon Chap. 8. However, to
use these latter results, we must specify the properties of the request size. The
request size is the number of packets for which transmission is requested, and
corresponds to the new arrivals, Yn, in (8.4). In this section, we analyse the

Cable Networks Revisited 231

moments of the request size. These are then used, in Sect. 11.3, to calculate
total packet delay.

In order to calculate these moments, we first consider the request size in a
successful request, which we denote by R. From the Poisson assumption in the
traffic model, it follows that

R
d= 1 + Poisson(λS), (11.1)

where S is the request delay. Thus R equals 1, for the packet that starts the
contention process, plus the number of arrivals during the interval [0, S]. With
fS(t) the density of the sojourn time, the joint density of (S, R) is given by

p(t, r) = e−λt (λt)r−1

(r − 1)!
fS(t), (11.2)

for t ≥ 0 and r ≥ 1. Taking expectations in (11.1), we obtain

E(R) = 1 + λE(S), (11.3)

and an approximation to E(S) is given by (4.10) in Chap. 4.
We now turn to the variance of R. Using P to denote a random variable

distributed according to a Poisson(λS) distribution, we find that

E(R2) = E((1 + P)2)

= E(1 + 2P + P 2)

= 1 + 3λE(S) + λ2
E(S2),

and consequently,
var(R) = λE(S) + λ2var(S). (11.4)

In the ensuing approximation in the next section, we need to consider the re-
quest size in one time slot, rather than the request size in a successful request.
For this, we must account for two further properties of the reservation process
in cable networks that were both discussed in Sect. 1.3. Firstly, recall that one
such time slot consists of three reservation minislots. Secondly, in each such
minislot, there is, approximately, a probability ν of a successful request. Val-
ues for ν are given in Sect. 4.7. Ignoring the correlation between successive
reservation minislots, it follows that approximately

Y
d= Y1 + Y2 + Y3, (11.5)

where the Yj are independent and identically distributed, and where

Y1
d= B · R. (11.6)

232 MULTIACCESS, RESERVATIONS & QUEUES

In (11.6), B is a Bernoulli random variable, that equals 1 with probability ν and
0 with probability 1−ν, and R is the request size in a successful request. Thus,
with probability ν there is a successful request and the request size equals R.
With probability 1 − ν, the request attempt fails, so that Y1 = 0.

Above, we have calculated the moments of R and these can in turn be used
to compute the moments of Y . A brief derivation shows that

E(Y) = 3ν(1 + λE(S)), (11.7)

and

var(Y) = 3ν
(
λE(S) + λ2var(S)

)
+ 3ν(1 − ν) (1 + λE(S))2 . (11.8)

11.3 Total Average Packet Delay

We propose to model the total packet delay, DT as

DT = 1 + d + DR + DQ. (11.9)

Here, d is the minimum delay experienced by a packet due to the round-trip
times in a cable network, DR is the packet delay due to the request proce-
dure, and DQ is transmission delay due to the queueing at the data queue.
That is, DQ is the delay due to the queueing at the central scheduler, once
the request has been successfully transmitted. As noted in Sect. 1.3, d equals
approximately two frames in cable networks.

The packet delay, DR, is the delay experienced by a random packet. As a
random packet is more likely to belong to a larger request, the density of the
sojourn time and request size of such a random packet is given by

p̃(t, r) = rp(t, r)/E(R), (11.10)

where p(t, r) is given in (11.2), and where t ≥ 0 and r ≥ 1. In a successful re-
quest, one packet suffers the full request delay, whereas the remaining packets
suffer a request delay that is uniformly distributed over S. Hence, using (S̃, R̃)
to denote a pair of random variables with density (11.10):

DR
d= B̃ · S̃ + (1 − B̃)US̃ ,

where US̃ is a random variable that is uniformly distributed on [0, S̃], and
where B̃ is a binary random variable, such that:

B̃ =

{
1 w.p. 1/R̃,

0 w.p. 1 − 1/R̃.

Cable Networks Revisited 233

Consequently, we obtain

E(DR) = E
(1

R̃
S̃ +

R̃ − 1
R̃

US̃

)
=

E(S)
1 + λE(S)

+
λE(S2)

2(1 + λE(S))
. (11.11)

We now turn to the transmission delay, DQ. Recall that the delayed bulk
service queue was used as a model for the data queue in a reservation proce-
dure. This queue is served with a speed of s packets per frame, so that it takes
approximately X/s frames to clear a data queue of size X . Consequently, we
obtain that

E(DQ) ≈ E(Xd)/s, (11.12)

where E(Xd) is the expected data-queue size in the delayed bulk service queue.
Hence, an approximation to the expected transmission delay can be obtained
from the approximation to the expected data-queue size given in (8.17). This
approximation involves the moments of Y , which is the number of packets
requested in one reservation slot. For these, we substitute the expressions given
in (11.7) and (11.8).

By adding the approximations to the average packet request delay and the
average data-transmission delay, we have expressed the total average packet
delay in terms of the moments of the request delay S and the probability ν
of a successful request. As argued extensively in Chap. 4, the moments of the
request delay depend on the access method that complements the basic con-
tention tree: Free access, blocked access, or scheduled access. Moreover, it was
shown in Sect. 4.7 that the success probability depends on the access method
as well, and that free access and scheduled access have slightly higher success
probability than blocked access.

Thus, we obtain an approximation for the total average packet delay as a
function of the traffic intensity. In addition, the approximation makes it clear
that the total average packet delay depends on the channel access protocols in
two respects: Through the service rate ν and through the variance of the request
delay.

Before we turn to the numerical comparisons in Sect. 11.4, three comments
are in order.

Remark 11.1 In order to actually calculate the moments of the sojourn
times in the machine repair models, we must specify the service rate with
which the repairman operates. Here, we argue as follows. There are on av-
erage f −Λ slots per frame that are used for the contention process. It follows
that the appropriate frame rate is

μ := 3ν(f − Λ),

where ν is the rate of the contention resolution process per minislot.

234 MULTIACCESS, RESERVATIONS & QUEUES

Remark 11.2 In Sect. 11.4 below, we make a number of approximations.
These are all based on the explicit expressions that are obtained when consid-
ering the contention process in heavy traffic. For these approximations to be
applicable, it is necessary that

μ < Λ,

where Λ is the traffic intensity per frame. Substitution of μ then shows that we
must require that

Λ >
3ν

1 + 3ν
f. (11.13)

Using the values for ν as given in, e.g. Sect. 4.7 then shows that our approxi-
mations are valid for traffic loads above approximately 55%. Still, the perfor-
mance curves show the full range of traffic intensities. These are obtained by
thresholding the approximations to zero, if condition (11.13) fails.

Remark 11.3 In deriving the expected transmission delay, we have ignored
the detailed arrival and departure pattern of packets within a frame; see Chap. 7
for more detailed calculations in case d = 0.

11.4 Numerical Assessment

In this section, we carry out a numerical assessment of the models and sched-
ules considered in this monograph. In Sect. 11.4.1, we investigate the quality
of our approximation to the total average packet delay by means of a com-
parison with results obtained by simulations of cable networks. This is done
for blocked contention trees and the three network scenarios introduced in
Sect. 1.4.

In Sect. 11.4.2, we assess the gain from using the schedules in this mono-
graph. In particular, we calculate the expected delay when using the standard
blocked and free contention trees with a fixed minimal amount guaranteed to
the contention process. We benchmark the performance of the best schedule
developed in this monograph against these standard schedules. In this best
schedule, we have used the scheduled access protocol and have chosen c (the
minimum number of slots per frame for the reservation process) optimally de-
pending on the traffic intensity.

11.4.1 Approximation to the Total Average Packet Delay

In an experiment discussed in Sect. 1.4.1 we compared the performance of ca-
ble networks in three different network scenarios. In these scenarios, we varied
the number of stations in the network. Performance curves for this experiment
were presented in Fig. 1.2 for the particular case that there are 50, 100, and 200

Cable Networks Revisited 235

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

load (in packets per frame)

de
la

y
(in

 fr
am

es
)

50 stations
100 stations
200 stations

Fig. 11.1. Total average packet delay obtained by simulation (solid lines) and approximat-
ing upper and lower bounds (dashed lines) for three network scenarios with 50, 100, and 200
stations

stations in the network. These curves are displayed again in Fig. 11.1 as the
solid lines. Additionally, Fig. 11.1 shows the approximating upper and lower
bounds based on the approximation described in Sect. 11.3. These approxima-
tions are shown as dashed lines.

Comparing the simulation results with the approximations, we see that there
is excellent numerical agreement between theory and experiment for high traf-
fic intensities, decreasing agreement for medium traffic intensities, and a com-
plete mismatch for low traffic intensities.

These observations should cause no surprise. Our analyses that have led to
the approximating upper and lower bounds are largely based on asymptotic
arguments: Both the approximation to the variance of the request delay and
the approximation to the expected data-queue size in a delayed bulk service
queue are based on ‘heavy traffic’ arguments. These are valid for high traf-
fic intensities only and one cannot expect the approximation to hold beyond
this regime. Furthermore, our model is not sufficiently detailed to capture the
system performance for light and medium traffic intensities. This is due to the
presence of substantial round-trip times in combination with the use of the con-
tention trees, as can be concluded from the following argument. The round-trip
times hamper the expansion of the contention tree, as a conflict in frame i can

236 MULTIACCESS, RESERVATIONS & QUEUES

only be resolved in frame i + 3. This causes the request delays to be much
larger than predicted: Our model assumes that all free space can be used for
the expansion of the current tree. This is a good approximation in heavy traffic,
when the trees are large and there are only few slots per frame that can be de-
voted to contention resolution. However, this approximation fails in light and
medium traffic, when the trees are small and the reservation slots are plentiful.
We get back to this issue in the concluding section of this chapter.

11.4.2 The Enhanced Reservation Procedure

We compare our enhanced procedure to the two standard methods to organise
the reservation procedure. There are two elements to our improvement. Firstly,
we used the scheduled access protocol rather than the free or blocked access
protocols. This scheduled access protocol improves on the blocked access pro-
tocol, as it operates at a higher rate. Moreover, the scheduled access protocol
improves on both the free and the blocked access protocols, as the variance of
the request delay is much smaller. Secondly, the enhanced reservation proce-
dure schedules the amount of bandwidth allocated to the reservation process.
In Sect. 8.1.1 we have introduced two such schedules: A static and an adaptive
schedule. It was found in Chap. 8 that adaptive scheduling outperforms static
scheduling, see Sect. 8.4.2. However, for static scheduling approximate, ana-
lytical, performance figures could be derived, whereas no such approximations
are available for adaptive scheduling. Therefore, we confine attention to this
static schedule, which uses a minimum amount of bandwidth guaranteed to the
reservation process that is tuned to the traffic intensity. The number of slots
guaranteed to the reservation is an integral number of slots per frame and is
determined by minimising the expression in (8.17) given the traffic intensity.
Here, we assume that this traffic intensity can be estimated reliably, so that
this scheduling policy can indeed be implemented. The standard methods both
guarantee one time slot to the reservation process, independent of the traffic
conditions.

In Fig. 11.2, we show the performance curves for the three procedures. All
curves are based on the approximations given in Sect. 11.3. Note that we only
show the performance curves for medium and high traffic intensities, where our
approximations are reasonably accurate. In comparing the three performance
curves, we see that the enhanced algorithm is superior over this range of traffic
intensities. For high traffic intensities, it reduces the total average packet delay
by about 20% as compared to its best competitor, the blocked contention tree.
The performance with the free contention trees is initially a little better than
with the blocked contention trees. This is due to the higher efficiency of the
free contention trees. At higher traffic intensities, however, the performance
with free contention trees is much worse, due to large variances.

Cable Networks Revisited 237

8 9 10 11 12 13 14 15 16 17
0

20

40

60

80

100

120

load (in packets per frame)

de
la

y
(in

 fr
am

es
)

blocked
free
scheduled

Fig. 11.2. Average total packet delay for standard organisation of reservation procedure with
blocked trees or free trees with c = 1, and the enhanced ‘scheduled’ algorithm

11.5 Further Research

In this monograph we have proposed delay models for multiaccess, in case
the multiaccess is organised via a reservation procedure and the requests are
carried out in contention using contention trees. The models were motivated by
multiaccess in cable networks. However, the formulation and analysis of the
models have been given in mathematical terms, by appropriate modifications
of some key performance models.

Because of this approach, the value of our contributions is not limited to
cable networks. The proposed models are of sufficient generality to be use-
ful in other contexts as well. However, we have also shown that this approach
has led to results that have clear significance in the context of cable networks,
and we have made a number of suggestions for improvement of the standard
way to organise the reservation procedure. Here, we refer in particular to the
modification of the tree procedure described in Sect. 4.2.1 and the schedules
to determine the amount of bandwidth to be used for reservation described in
Sect. 8.1.1. Additionally, the results from this chapter demonstrate that the re-
sults are numerically accurate. The approximations to the total average packet
delay match the simulation values quite well in case of heavy traffic. Thus, we

238 MULTIACCESS, RESERVATIONS & QUEUES

were also able to quantify the gain in implementing our suggestions, which
we estimated to be an improvement of about 20% over the best standard
competitor.

This monograph has also left a number of issues unresolved which we pro-
pose for future research. Some detailed suggestions concerning the analysis of
the key models have been formulated along the way in the concluding sections
of the various chapters. We now formulate a number of research questions that
relate more specifically to the analysis of the reservation procedure.

It has been pointed out in Sect. 11.4.1 that the proposed approximations
are valid only in the heavy traffic regime, i.e. from approximately 25% below
the stability boundary up to the stability boundary. It is of interest to extend
the approximations to encompass the other traffic regimes. The major obstacle
towards this goal is the limitation of the proposed model for the request delay,
as it does not account for the presence of propagation delay in combination
with the use of the contention trees.

We see two possible ways to extend our models for trees to encompass
the round-trip delay. Following a suggestion of Massey [119], it is possible
to view the delayed communication channel as a number of interleaved non-
delayed communication channels. Thus, we can confine the analysis to a non-
delayed channel, which is easier to carry out. Of course, an implementation
which splits the channel into a number of interleaved channels is less efficient
than an implementation which does not split the channel, so that this approach
is not fully satisfactory from an engineering perspective. A preferable approach
then is to extend the system with an alternative access mode, such as direct ac-
cess. In this case, one can use those time slots for direct access, which are
neither guaranteed for reservation nor usable for data transmission of packets
in the data queue. Thus, one will mitigate the problems with the model for
the request delay. Moreover, there is numerical evidence, see Pronk et al. [145]
and Hekstra-Nowacka et al. [78], that this mixing of access modes, for medium
traffic intensities, is more efficient than the exclusive use of the reservation pro-
cedure.

In view of this latter evidence, it is natural to conjecture that direct access
is best for light traffic, mixed access is best for medium traffic intensity, and
that the reservation procedure is the most appropriate schedule in case of heavy
traffic. From a system’s viewpoint, we can thus conclude that the analysis of
the reservation procedure in the heavy traffic case, as undertaken in this mono-
graph, is indeed the most relevant one.

It is important to evaluate our scheduler enhancements in an actual sys-
tem. Such an evaluation will certainly use traffic conditions that are different
from the simplifying Poisson assumption that we have entertained through-
out this monograph. Note, though, that the assumption of independent Poisson
processes at the various stations constitutes the core of one of the two standard

Cable Networks Revisited 239

performance models that are used in the standardisation of cable access sys-
tems, see, e.g. [73, 74, 145, 150]. Moreover, the extension of our results to the
second standard performance model, which assumes independent batch Pois-
son processes, seems not very difficult. However, the real challenge here is the
incorporation of the burstiness which characterises real traffic. For an experi-
mental approach to assess the effects of more realistic traffic models in cable
networks, see Ivanovich et al. [83, 84].

Furthermore, in Chap. 8, we have indicated that the analysis of the delayed
bulk service queue forms the basis of two scheduling strategies. In the en-
hanced algorithm, as evaluated in Sect. 11.4.2, we have confined ourselves to
the static scheduler. However, a comparison of a reservation procedure based
on the adaptive scheduling strategy is also called for, as is a comparison with
the more specific, ad hoc, algorithms proposed in the context of cable networks,
see, e.g. [73, 150].

To introduce a final topic for future research, note that in this chapter, we
have approached the analysis of the reservation procedure by means of a de-
composition of the problem into a request phase and a data-transmission phase.
Separate models for both phases were proposed and analysed: The repairman
model for the request phase and the delayed bulk service queue for the data-
transmission phase. By combining the results, we have been able to approxi-
mate the average packet delay for the reservation procedure.

This approach is natural, but has its limitations as it does not generalise to
higher moments or the distribution of the packet delay: In order to establish
further properties of the packet delay, it is necessary to consider the detailed
interaction between the two phases, caused by the correlation between request
size and request delay.

So, a final topic for future research is the extension of our result on average
packet delay to higher moments and distributions. As the foregoing argument
shows, this will require a completely different approach from the decompo-
sitional one taken in this chapter. One possible path towards a more compre-
hensive understanding of reservation procedures is initiated in Part IV of this
book, and utilises tandem queues. Another noteworthy attempt to formulate
and analyse a more integrated model can be found in one of the initial contri-
butions to the Pelican project (the joint Philips-EURANDOM project on con-
ditional access in networks that also provided the impetus for our work): In
Palmowski et al. [135, 136] an open, gated, tandem system is considered in
which the service time in the second server of the tandem is coupled to the
(batch) sojourn time in the first server of the tandem. This nicely captures the
interaction described above, as the batch sojourn time in the first server can
be interpreted as request delay and the service time at the second queue as re-
quest size. As such, [135, 136] provide an interesting starting point to further
pursue the study of reservation procedures. However, to make this contribution

240 MULTIACCESS, RESERVATIONS & QUEUES

really convincing for cable networks, it should be modified to a closed system
and the propagation delay should find a place. Part IV of this monograph, as
well as the papers [135, 136] then illustrate the mathematical challenges that
go with the extension of our result to higher moments and distributions.

References

[1] Abate, J. and W. Whitt (1992). Numerical inversion of probability generating functions.
Operations Research Letters 12: 245–251.

[2] Abolnikov, L. and A. Dukhovny (1987). Necessary and sufficient conditions for the
ergodicity of Markov chains with transition Δm,n (Δ′

m,n)-matrix. Journal of Applied
Mathematics and Simulation 1: 13–24.

[3] Ackroyd, M. (1980). Computing the waiting time distribution for the G/G/1 queue by
signal processing methods. IEEE Transactions on Communications 28: 52–58.

[4] Adan, I.J.B.F., J.S.H. van Leeuwaarden, and E.M.M. Winands (2006). On the applica-
tion of Rouché’s theorem in queueing theory. Operations Research Letters 34: 355–360.

[5] Adan, I.J.B.F. and Y.Q. Zhao (1996). Analyzing GI/Er/1 queues. Operations Research
Letters 19: 183–190.

[6] Andradottir, S., H. Ayhan, and D. Down (2001). Server assignment policies for max-
imizing the steady-state throughput of finite queueing systems. Management Science
47: 1421–1439.

[7] Asmussen, S. (2003). Applied Probability and Queues (2nd edition), Springer, New
York.

[8] Bagchi, T.P. and J.G.C. Templeton (1970). Numerical Methods in Markov Chains and
Bulk Queues, Springer, New York.

[9] Bailey, N.T.J. (1954). On queueing processes with bulk service. Journal of the Royal
Statistical Society, Series B 16: 80–87.

[10] Baskett, F., K.M. Chandy, R.R. Muntz, and F.G. Palacios (1975). Open, closed, and
mixed networks of queues with different classes of customers. Journal of the ACM 22:
248–260.

[11] Bayer, N. (1996). On the identification of Wiener-Hopf factors. Queueing Systems 23:
293–300.

[12] Bellman, R. (1970). Introduction to Matrix Analysis (2nd edition), McGraw-Hill,
London.

242 MULTIACCESS, RESERVATIONS & QUEUES

[13] Benini, L. and G. de Micheli (2002). Networks on Chip: A new SoC paradigm. IEEE
Computer 35: 70–78.

[14] Bertsekas, D.P. and R.G. Gallager (1992). Data Networks, Prentice-Hall, Englewood
Cliffs, N.J.

[15] Bisdikian, C., K. Maruyama, D. Seidman, and D. Serpranos (1996). Cable access be-
yond the hype: On residential broadband data services over HFC networks. IEEE Com-
munications Magazine 34: 128–135.

[16] Blanc, J.P.C. (1982). Application of the Theory of Boundary Value Problems in the
Analysis of a Queueing Model with Paired Services, Mathematical Centre Tract 153,
Amsterdam.

[17] Blanc, J.P.C. (1984). Asymptotic analysis of a queueing system with a two-dimensional
state space. Journal of Applied Probability 21: 870–886.

[18] Blanc, J.P.C. (1985). The relaxation time of two queueing systems in series. Commu-
nications in Statistics-Stochastic Models 1: 1–16.

[19] Borst, S.C., O.J. Boxma, and M.J.G. van Uitert (2001). Two coupled queues with het-
erogeneous traffic. In: J.M. de Souza, N.L.S. da Fonseca, and E.A. de Souza e Silva
(eds.) Proceedings of ITC 17, North-Holland, Amsterdam: 1003–1014.

[20] Boudreau, P.E., J.S. Griffin, and M. Kac (1962). An elementary queueing problem. The
American Mathematical Monthly 69: 713–724.

[21] Borst, S.C., O.J. Boxma, J.A. Morrison, and R. Núñez Queija (2003). The equiva-
lence of processor sharing and service in random order. Operations Research Letters
31: 254–262.

[22] Boxma, O.J., D. Denteneer, and J.A.C. Resing (2002). Some models for contention
resolution in cable networks. In: E. Gregori, M. Conti, A.T. Campbell, G. Omidyar, and
M. Zukerman (eds.) Networking 2002, Springer LNCS 2345, Berlin: 117–128.

[23] Boxma, O.J., D. Denteneer, and J.A.C. Resing (2003). Delay models for contention
trees in closed populations. Performance Evaluation 53: 169–185.

[24] Boxma, O.J. and W.P. Groenendijk (1988). Two queues with alternating ser-
vice and switching times. In: O.J. Boxma and R. Syski (eds.) Queueing Theory and its
Applications, Liber Amicorum for J.W. Cohen, North-Holland, Amsterdam: 261–282.

[25] Brockmeyer, E. (1948). A survey of A.K. Erlang’s mathematical works. Danish Acad-
emy of Technical Sciences 2: 101–126.

[26] Van den Broek, M.X. (2001). On contention resolution procedures. Queuing analysis
and simulation, M.Sc. Thesis, Eindhoven University of Technology.

[27] Bruneel, H. (1984). A general model for the behaviour of infinite buffers with periodic
service opportunities. European Journal of Operational Research 16: 98–106.

[28] Bruneel, H. and B.G. Kim (1993). Discrete-Time Models for Communication Systems
including ATM, Kluwer, Dordrecht.

References 243

[29] Capetanakis, J.I. (1977). The Multiple Access Broadcast Channel: Protocol and Ca-
pacity Considerations, Ph.D. dissertation, MIT, Dept. of Electrical Engineering and
Computer Science, Cambridge, MA.

[30] Capetanakis, J.I. (1979). Tree algorithms for packet broadcast channels. IEEE Transac-
tions on Information Theory 25: 505–515.

[31] Chaudhry, M.L., C.M. Harris, and W.G. Marchal (1990). Robustness of rootfinding in
single-server queueing models. ORSA Journal on Computing 3: 273–286.

[32] Chaudhry, M.L. and J.G.C. Templeton (1983). A First Course in Bulk Queues, Wiley,
New York.

[33] Coffman, E.G., G. Fayolle, and I. Mitrani (1986). Sojourn times in a tandem queue
with overtaking: Reduction to a boundary value problem. Communications in Statistics-
Stochastic Models 2: 43–65.

[34] Cohen, J.W. (1975). The Wiener-Hopf technique in applied probability. In: J. Gani
(ed.) Perspectives in Probability and Statistics, Applied Probability Trust, Sheffield:
145–156.

[35] Cohen, J.W. (1982). The Single Server Queue, 2nd edition, North-Holland, Amsterdam.

[36] Cohen, J.W. (1984). On a functional relation in three complex variables: Three coupled
processors. Technical Report Mathematical Institute Utrecht 359, Utrecht University.

[37] Cohen, J.W. (1984). On processor sharing and random order of service (Letter to the
editor). Journal of Applied Probability 21: 937.

[38] Cohen, J.W. (1988). Boundary value problems in queueing theory. Queueing Systems
3: 97–128.

[39] Cohen, J.W. and O.J. Boxma (1983). Boundary Value Problems in Queueing System
Analysis, North-Holland, Amsterdam.

[40] Corner, M.D., J. Liebeherr, N. Golmie, C. Bisdikian, and D.H. Su (2000). A priority
scheme for the IEEE 802.14 MAC protocol for hybrid fiber-coax networks. IEEE/ACM
Transactions on Networking 8: 200–211.

[41] Crommelin, C.D. (1932). Delay probability formulae when the holding times are con-
stant. Post Office Electrical Engineers Journal 25: 41–50.

[42] Crommelin, C.D. (1934). Delay probability formulae. Post Office Electrical Engineers
Journal 26: 266–274.

[43] Darroch, J.N. (1964). On the traffic light queue. Annals of Mathematical Statistics 35:
380–388.

[44] Denteneer, D. (2001). A time sharing system with a waiting room. National Laboratory
Technical Note TN-2001/168.

[45] Denteneer, D. (2001). Analysis of contention resolution in cable networks via an exten-
sion of the time sharing system. In: W. Verhaegh, J. Korst, and E. Aarts (eds.) Scharm
2001, Philips Workshop on Scheduling and Resource Management: 159–168.

244 MULTIACCESS, RESERVATIONS & QUEUES

[46] Denteneer, D. (2001). Efficient scheduling of contention trees. National Laboratory
Technical Note TN-2001/169.

[47] Denteneer, D. (2005). Data Transfer in Cable Networks: Delay Models for Multiaccess
with Contention Trees, Ph.D. thesis, Eindhoven University of Technology.

[48] Denteneer, D. (2006). Models for data transmission delay in cable networks. Statistica
Neerlandica 60: 12–45.

[49] Denteneer, D. and C. Gromoll (2007). Heavy traffic analysis of a closed queueing sys-
tem with gated random order of service. In preparation.

[50] Denteneer, D., A.J.E.M. Janssen, and J.S.H. van Leeuwaarden (2005). Moments series
inequalities for the discrete-time bulk service queue. Mathematical Methods of Opera-
tions Research 61: 85–108.

[51] Denteneer, D., J.S.H. van Leeuwaarden, and J.A.C. Resing (2003). Bounds for
a discrete-time multi-server queue with an application to cable networks. In: J.
Charzinski, R. Lehnert, and P. Tran-Gia (eds.) Providing Quality of Service in
Heterogeneous Environments, Proceedings of ITC 18: 601–610.

[52] Denteneer, D. and J.S.H. van Leeuwaarden (2005). The delayed bulk service queue:
A model for a reservation process. In: X. Liang, Z. Xin, V.B. Iversen, and G.S. Kuo
(eds.) Performance challenges for efficient next generation networks, Proceedings of
ITC 19: 909–918.

[53] Denteneer, D., J.S.H. van Leeuwaarden, and I.J.B.F. Adan (2007). The acquisition
queue. Queueing Systems 56(3–4): 229–240.

[54] Denteneer, D. and M.S. Keane (2004). The distribution of success instants in contention
trees. National Laboratory Technical Note TN-2004/00218.

[55] Denteneer, D. and V. Pronk (2001). On the number of contenders in a contention tree,
In: Proceedings of ITC Specialist Seminar 14, Girona: 105–112.

[56] Van Driel, C.-J., P.A.M. van Grinsven, V. Pronk, and W.A.M. Snijders (1997). The
(r)evolution of access networks for the information super-highway. IEEE Communica-
tions Magazine 35: 2–10.

[57] Dutta-Roy, A. (1999). Cable, it’s not just for tv. IEEE Spectrum 35: 53–59.

[58] Data-Over-Cable Service Interface Specifications, Cable Television Laboratories Inc.,
Public Report SP-RFlv1.1-Pl01-990226.

[59] Digital Video Broadcasting (DVB); interaction channel for Cable TV distribution sys-
tems (CATV), working draft (Version 3), June 28, 2000, based on European Telecom-
munications Standard 300 800 (March 1998).

[60] Evgrafov, M.A. (1966). Analytic Functions, Dover, New York.

[61] Fayolle, G. and R. Iasnogorodski (1979). Two coupled processors: The reduction to
a Riemann-Hilbert problem. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete 47: 325–351.

References 245

[62] Fayolle, G., R. Iasnogorodski, and V. Malyshev (1999). Random Walks in the Quarter
Plane, Springer, New York.

[63] Fayolle, G., P.J.B. King, and I. Mitrani (1982). The solution of certain two-dimensional
Markov models. Advances in Applied Probability 14: 295–308.

[64] Feller, W. (1968). An Introduction to Probability Theory and its Applications, Vol. I
(3rd edition), Wiley, New York.

[65] Fendick, K.W. and M.A. Rodrigues (1994). Asymptotic analysis of adaptive rate control
for diverse sources with delayed feedback. IEEE Transactions on Information Theory
40: 2008–2025.

[66] Feng, W., M. Kowada, and K. Adachi (1998). A two-queue model with Bernoulli
service schedule and switching times. Queueing Systems 30: 405–434.

[67] Finkenzeller, K. and R. Waddington (2000). RFID-handbook, Wiley, New York.

[68] Franx, G.J. (2001). A simple solution for the M/D/c waiting time distribution. Opera-
tions Research Letters 29: 221–229.

[69] Gaier, D. (1964). Konstruktive Methoden der Konformen Abbildung, Springer, Berlin.

[70] Gail, H.R., S.L. Hantler, and B.A. Taylor (1996). Spectral analysis of M/G/1 and G/M/1
type Markov chains. Advances in Applied Probability 28, 114–165.

[71] Gakhov, F.D., E.I. Zverovich, and S.G. Samko (1973). Increment of the argument, log-
arithmic residue and a generalized principle of the argument (in Russian), Doklady
Akademii Nauk SSSR 213: 1233–1236 (translated in Soviet Mathematics Doklady 14:
1856–1860).

[72] Gallager, R.G. (1978). Conflict resolution in random access broadcast networks. In:
Proceedings of AFOSR Workshop on Communication Theory and Applications: 74–76.

[73] Golmie, N., S. Masson, G. Pieris, and D.H. Su (1997). A MAC protocol for HFC
networks: Design issues and performance evaluation. Computer Communications 20:
1042–1050.

[74] Golmie, N., Y. Santillan, and D.H. Su (1999). A review of contention resolution algo-
rithms for the IEEE 802.14 networks. IEEE Communication Surveys and Tutorials 2:
2–12.

[75] Gromoll, H.C., A.L. Puha, and R.J. Williams (2002). The fluid limit of a heavily loaded
processor sharing queue. Annals of Applied Probability 12: 797–859.

[76] Gyori, I. and G. Ladas (1991). Oscillation Theory of Delay Differential Equations, with
Applications, Clarendon Press, Oxford.

[77] Hayes, J.F. (1984). Computer Communication Networks, Plenum, New York.

[78] Hekstra-Nowacka, E., V. Pronk, L. Tolhuizen, and D. Denteneer (1999). Bandwidth
allocation in HFC networks. In: W. Verhaegh, J. Korst, and E. Aarts (eds.) Proceedings
of Scharm’99: Philips workshop on scheduling and resource management: 129–138.

246 MULTIACCESS, RESERVATIONS & QUEUES

[79] Henrici, P. (1974). Applied and Computational Complex Analysis, Vol. I, Wiley,
New York.

[80] IEEE project 802.14. Cable-TV access method and physical layer specification. Draft
2 Revision 2.

[81] Iglehart, D.L. (1965). Limit diffusion approximations for the many server queue and
the repairman problem. Journal of Applied Probability 2: 429–441.

[82] Iglehart, D.L. and W. Whitt (1970). Multiple channels in heavy traffic I. Advances in
Applied Probability 2: 150–177.

[83] Ivanovich, M., M. Zukerman, and R.G. Addie (1997). Performance investigation into an
IEEE 802.14 MAC protocol for HFC networks. In: Proceedings of ICC 97, Montreal,
2: 999–1003.

[84] Ivanovich, M. and M. Zukerman (1998). Evaluation and scheduling schemes for an
IEEE 802.14 MAC protocol loaded by real traffic. In: Proceedings of INFOCOM 98,
San Francisco, CA, 3: 1384–1391.

[85] Jacquet, P., P. Mühlethaler, and P. Robert (2001). Framing protocols on upstream
channel in CATV networks: Asymptotic average delay analysis. INRIA Report 4114,
Rocquencourt.

[86] Janssen, A.J.E.M. and M.J.M. de Jong (2000). Analysis of contention tree-algorithms.
IEEE Transactions on Information Theory 46: 2163–2172.

[87] Janssen, A.J.E.M. and J.S.H. van Leeuwaarden (2005). A discrete queue, Fourier
sampling on Szegö curves, and Spitzer’s formula. International Journal of Wavelets,
Multiresolution and Information Processing 3: 361–387.

[88] Janssen, A.J.E.M. and J.S.H. van Leeuwaarden (2005). Analytic computation schemes
for the discrete-time bulk service queue, Queueing Systems 50: 141–163.

[89] Janssen, A.J.E.M. and J.S.H. van Leeuwaarden (2005). Relaxation time for the discrete
D/G/1 queue. Queueing Systems 50: 53–80.

[90] Johnson, N.L., S. Kotz, and A.W. Kemp (1992). Univariate Discrete Distributions (2nd
edition), Wiley, New York.

[91] Johari, R. and D.K.H. Tan (2001). A new feedback congestion control policy for long
propagation delays. IEEE/ACM Transactions on Networking 9: 818–832.

[92] Kang, K. and B. Steyaert (1999). Bounds analysis for WRR scheduling in a statistical
multiplexer with bursty sources. Telecommunications Systems 12: 123–147.

[93] Kaplan, M.A. and E. Gulko (1985). Analytic properties of multiple access trees. IEEE
Transactions on Information Theory 31: 255–263.

[94] Kemperman, J.H.B. (1961). The Passage Problem for a Stationary Markov Chain, The
University of Chicago Press, Chicago.

[95] Kingman, J.F.C. (1970). Inequalities in the theory of queues. Journal of the Royal Sta-
tistical Society, Series B 32: 102–110.

References 247

[96] De Klein, S.J. (1988). Fredholm Integral Equations in Queueing Analysis, Ph.D. thesis,
Utrecht University.

[97] Kleinrock, L. (1968). Certain analytical results for the time-shared processors. In: Pro-
ceedings of IFIP68: 838–845.

[98] Kleinrock, L. (1975). Queueing Systems Vol. I: Theory, Wiley, New York.

[99] Kleinrock, L. (1976). Queueing Systems Vol. II: Computer Applications, Wiley,
New York.

[100] Klimenok, V. (2001). On the modification of Rouché’s theorem for the queueing theory
problems. Queueing Systems 38: 431–434.

[101] Kobayashi, H. (1978). Modeling and Analysis. An Introduction to System Performance
Evaluation Methodology, Addison-Wesley, Reading, Massachusetts.

[102] Konheim, A.G. (1975). An elementary solution of the queueing system G/G/1. SIAM
Journal on Computing 4: 540–545.

[103] Krichagina, E.V. and A.A. Puhalskii (1997). A heavy traffic analysis of a closed queue-
ing system with a GI/∞ service center. Queueing Systems 25: 235–280.

[104] Kwaaitaal, J.J.B. (1999). A multi-standard simulation platform for hybrid fiber/coax
networks, Graduate Report, Eindhoven University of Technology, Dept. of Electrical
Engineering.

[105] Laevens K. and H. Bruneel (1998). Discrete-time multiserver queues with priorities.
Performance Evaluation 33: 249–275.

[106] LAN MAN Standards Committee of the IEEE Computer Society (1999). Informa-
tion Technology – Telecommunications and Information Exchange between Systems
– Local and Metropolitan Area Networks – Specific Requirements. Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (ISO/IE
8802-11:1999(E); ANSI/IEEE Std 802.11, 1999 Edition, USA).

[107] Law, C., K. Lee, and K.-Y. Siu (2000). Efficient memoryless protocol for tag identifi-
cation. In: Proceedings of the 4th International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications: 75–84.

[108] Van Leeuwaarden, J.S.H. (2002). Bandwidth Allocation in HFC Networks using Frame
Based Scheduling Strategies. Final report of the postgraduate program Mathematics for
Industry, Stan Ackermans Institute, Eindhoven.

[109] Van Leeuwaarden, J.S.H. (2005). Queueing Models for Cable Access Networks, Ph.D.
thesis, Eindhoven University of Technology.

[110] Van Leeuwaarden, J.S.H. (2006). Delay analysis for the fixed-cycle traffic light queue.
Transportation Science 40: 189–199.

[111] Van Leeuwaarden, J.S.H., T.J.J. Denteneer, and J.A.C. Resing (2006). A discrete-time
queueing model with periodically scheduled arrival and departure slots. Performance
Evaluation 63: 278–294.

248 MULTIACCESS, RESERVATIONS & QUEUES

[112] Van Leeuwaarden, J.S.H. and J.A.C. Resing (2005). A tandem queue with coupled
processors: Computational issues. Queueing Systems 50: 29–52.

[113] Van Leeuwaarden, J.S.H. and J.A.C. Resing (2004). A two-station network with proces-
sor sharing. Unpublished report.

[114] Lindley, D.V. (1952). The theory of queues with a single server. Proceedings of the
Cambridge Philosophical Society 48: 277–289.

[115] Malyshev, V. (1972). An analytic method in the theory of two-dimensional random
walks. Siberian Mathematical Journal 13: 1314–1329.

[116] Mandelbaum, A. and W.A. Massey (1995). Strong approximations for time-dependent
queues. Mathematics of Operations Research 20: 33–64.

[117] Mandelbaum, A., W. Massey, and M. Reiman (1998). Strong approximations for
Markovian service networks. Queueing Systems 30: 149–201.

[118] Mandelbaum, A. and G. Pats (1995). State dependent queues: Approximations and ap-
plications. In: F.P. Kelly and R.J. Williams (eds.) Stochastic Networks, IMA volumes in
Mathematics and its Applications 71: 239–282.

[119] Massey, J.L. (1981). Collision resolution algorithms and random access communica-
tions. In: G. Longo (ed.) Multi-user communication systems, CISM Course and Lecture
Notes 265, Springer, New York.

[120] Mathys, P. and Ph. Flajolet (1985). Q-ary collision resolution algorithms in random-
access systems with free or blocked channel access. IEEE Transactions on Information
Theory 31: 217–243.

[121] McNeill, D.R. (1968). A solution to the fixed-cycle traffic light problem for compound
Poisson arrivals. Journal of Applied Probability 5: 624–635.

[122] Metcalfe, R.M. and D.R. Boggs (1976). Ethernet: Distributed packet switching for local
computer networks. Communications of ACM 19: 395–404.

[123] Mikou, N. (1988). A two-node Jackson’s network subject to breakdowns. Communica-
tions in Statistics-Stochastic Models 4: 523–552.

[124] Mikou, N., O. Idrissi-Kacimi, and S. Saadi (1995). Two processes interacting only dur-
ing breakdown: The case where the load is not lost. Queueing Systems 19: 301–317.

[125] Miller, A.J. (1963). Settings for fixed-cycle traffic signals. Operational Research Quar-
terly 14: 373–386.

[126] Mitra, D. (1981). Waiting time distributions for closed queueing network models of
shared-processor systems. In: F.J. Kylstra (ed.), Proceedings of Performance ’81, North
Holland Publishing Company, Amsterdam: 113–131.

[127] Mosely, J. and P.A. Humblet (1985). A class of efficient contention resolution al-
gorithms for multiple access channels. IEEE Transactions on Communication 33:
145–151.

[128] Murata, M. and H. Miyahara (1991). An analytic solution of the waiting time distribu-
tion for the discrete-time G/G/1 queue. Performance Evaluation 13: 87–95.

References 249

[129] Muskhelishvili, N.I. (1992). Singular Integral Equations.Dover, New York.

[130] Nauta, H. (1988). Ergodicity Conditions for a Class of Two-dimensional Queueing
Problems, Ph.D. thesis, Utrecht University.

[131] Neagoe, V.E. (1996). Inversion of the Van der Monde matrix. IEEE Signal Processing
Letters 3: 119–120.

[132] Neininger, R. and L. Rüschendorf (2004). A general limit theorem for recursive algo-
rithms and combinatorial structures. Annals of Applied Probability 14: 378–418.

[133] Neuts, M.F. (1989). Structured Stochastic Matrices of M/G/1 type and Their Applica-
tions, Dekker, Basel.

[134] Newell, G.F. (1960). Queues for a fixed-cycle traffic light. Annals of Mathematical
Statistics 31: 589–597.

[135] Palmowski, Z. and S. Schlegel (2002). Modeling of cable access networks. National
Laboratory Technical Note TN-2002/820.

[136] Palmowski, Z., S. Schlegel, and O.J. Boxma (2003). A tandem queue with a gate.
Queueing Systems 43: 349–364.

[137] Pollaczek, F. (1932). Zur Theorie des Wartens vor Schaltergruppen. Elektronische
Nachrichtentechnik 9: 434–454.

[138] Pollaczek, F. (1952). Fonctions charactéristiques de certaines répartitions définies au
moyen de la notion d’ordre, Application à la théorie des attentes. Comptes rendus de
l’Académie des sciences-Paris 234: 2334–2336.

[139] Pólya, G. and G. Szegö (1972). Problems and Theorems in Analysis, Vol. I, Springer,
New York.

[140] Pólya, G. and G. Szegö (1976). Problems and Theorems in Analysis, Volume II,
Springer, New York.

[141] Polyzos, G.C. and M. Molle (1994). A queueing theoretic approach to the delay analysis
for the FCFS 0.487 conflict resolution algorithm. IEEE Transactions on Information
Theory 39: 1887–1906.

[142] Powell, W.B. (1985). Analysis of vehicle holding and cancellation strategies in bulk
arrival, bulk service queues. Transportation Science 19: 352–377.

[143] Powell W.B. and P. Humblet (1986). The bulk service queue with a general control
strategy: Theoretical analysis and a new computational procedure. Operations Research
34: 267–275.

[144] Pronk, S. and M. de Jong (1998). Multi-standard simulation platform for hybrid fiber/
coax networks; I Standard survey, II Basic architecture. National Laboratory Technical
Note TN 179/98.

[145] Pronk, S.P.P., E. Hekstra-Nowacka, L. Tolhuizen, and D. Denteneer (1999). Descrip-
tion and performance analysis of the DVB/DAVIC MAC protocol for HFC Networks.
National Laboratory Report 7105.

250 MULTIACCESS, RESERVATIONS & QUEUES

[146] Prabhu, N.U. (1980). Stochastic Storage Processes. Queues, Insurance Risk, and Dams,
Springer, New York.

[147] Regterschot, G.J.K. (1987). Wiener-Hopf Factorization Techniques in Queueing Mod-
els, Ph.D. thesis, University of Twente.

[148] Resing, J.A.C. and L. Örmeci (2003). A tandem queueing model with coupled proces-
sors. Operations Research Letters 31: 383–389.

[149] Roberts, L.G. (1972). Aloha Packet System with and without Slots and Capture (ASS
Note 8). Stanford, CA: Stanford Research Institute, Advanced Research Projects
Agency, Network Information Center.

[150] Sala, D., J. Limb, and S. Khaunte (1998). Adaptive control mechanisms for cable
modem MAC protocols. In: Proceedings of INFOCOM 98, 3, San Francisco, CA:
1392–1399.

[151] Scherr, A.A. (1967). An analysis of time-shared computer systems, MIT Press,
Cambridge, MA.

[152] Servi, L.D. (1986). D/G/1 queues with vacations. Operations Research 34: 619–629.

[153] Sevcik, K.C. and I. Mitrani (1979). The distribution of queueing network states at input
and output instants, In: M. Arato et al. (eds.) Proceedings of Performance 79, North
Holland Publishing, Amsterdam: 319–335.

[154] De Smit, J.H.A. (1995). Explicit Wiener-Hopf factorizations for the analysis of multi-
dimensional queues. In: J.H. Dshalalow (ed.) Advances in Queueing. Theory, Methods
and Open Problems, CRC, Boca Raton: 293–310.

[155] Smith, W.L. (1953). On the distribution of queueing times. Proceedings of the
Cambridge Philosophical Society 49: 449–461.

[156] Spitzer, F.L. (1956). A combinatorial lemma and its application to probability theory.
Transactions of American Mathematical Society 82: 323–339.

[157] Stadje, W. (1997). A new approach to the Lindley recursion. Statistics & Probability
Letters 31: 169–175.

[158] Syski, R. (1967). Pollaczek’s methods in queueing theory. In: R. Cruon (ed.) Queue-
ing Theory, Recent Developments and Applications, Oxford Univerity Press, London:
33–60.

[159] Takács, L. (1962). Introduction to the Theory of Queues, Oxford University Press,
Oxford.

[160] Tanenbaum, A.S. (1981). Computer Networks, Prentice-Hall, Englewood Cliffs.

[161] Tijms, H.C. (1994). Stochastic Models: An Algorithmic Approach, Wiley, New York.

[162] Titchmarsh, E.C. (1939). The Theory of Functions (2nd edition), Oxford University
Press, New York.

[163] Tsybakov, B.S. (1985). Survey of USSR contributions to random multiple-access com-
munications. IEEE Transactions on Information Theory 31: 143–165.

References 251

[164] Tsybakov, B.S. and V.A. Mikhailov (1978). Free synchronous packet access in a broad-
cast channel with feedback. Problemy Peredachi Informatsii 14: 32–59.

[165] Tsybakov, B.S. and V.A. Mikhailov (1980). Random multiple access of packets: Part
and try algorithm. Problemy Peredachi Informatsii 16: 305–317.

[166] US 7,251,251 (2007). Method and system for transmitting a plurality of messages.
United States Patent.

[167] Van Uitert, M.J.G. (2003). Generalized Processor Sharing Queues, Ph.D. thesis,
Eindhoven University of Technology.

[168] Vaulot, E. (1951). Les formules d’Erlang et leur calcul pratique. Annals of Telecommu-
nications 6: 279–286.

[169] Webster, F.V. (1958). Traffic signal settings. Road Research Laboratory Technical Re-
port No. 39, HMSO, London.

[170] Whitt, W. (1980). Some useful functions for functional limit theorems. Mathematics of
Operations Research 5: 67–85.

[171] Whitt, W. (1984). Heavy-traffic approximations for service systems with blocking.
AT&T Bell Laboratories Technical Journal 63: 689–708.

[172] Whitt, W. (2002). Stochastic Process Limits, Springer, New York.

[173] Winands, E.M.M., D. Denteneer, J.A.C. Resing, and R. Rietman (2003). A finite-source
feedback queueing network as a model for the IEEE 802.11 distributed coordination
function. SPOR-Report 2003-22. Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology.

[174] Winands, E.M.M., T.J.J. Denteneer, J.A.C. Resing, and R. Rietman (2005). A
finite-source queueing model for the IEEE 802.11 DCF. European Transactions on
Telecommunications 16: 77–89.

[175] Yin, W.-M. and Y.-D. Lin (2000). Statistically optimized minislot allocation for initial
and collision resolution in hybrid fiber coaxial networks. IEEE Journal on Selected
Areas in Communication 18: 1764–1773.

[176] Zhao, Y.Q. and L.L. Campbell (1996). Equilibrium probability calculations for a
discrete-time bulk queue model. Queueing Systems 22: 189–198.

About the Authors

Dee Denteneer was born in Brunssum, The Netherlands, in 1960. He studied
mathematics and computer science (Utrecht, 1984) and obtained a PhD degree
in mathematics (Eindhoven, 2005) supervised by Onno Boxma, Sem Borst,
and Michael Keane.

Dee started his career at the University of Utrecht as a scientific programmer
in the project ‘Analysis of discrete data with small numbers of observations’
under the supervision of Albert Verbeek. Next, between 1984 and 1988, he
worked at the Dutch Central Statistical Office on the Blaise language for ques-
tionnaire description. Currently, he is a principal research scientist at Philips
Research in Eindhoven. His main interest is in statistics and applied probabil-
ity and their application in industrial research areas such as MPEG encoding,
speech recognition, secure biometrics, and data transmission systems. Since
2006 he has been working on the performance analysis of wireless mesh net-
works, and their standardisation in IEEE 802.11s.

Dee is married to Marion Hermans, and they have four children, Thijs, Ellen,
Anne, and Paul.

Johan van Leeuwaarden was born in Eindhoven, The Netherlands, in 1978.
He studied econometrics (Tilburg, 2000) and mathematics (Eindhoven, 2002).
Supervised by Jacques Resing, Onno Boxma and Sem Borst, he obtained a
PhD degree in mathematics (with honors, Eindhoven, 2005). His dissertation
received the Beta PhD Award (2006) and the INFORMS Telecommunications
Dissertation Award (2008).

Johan currently works as an assistant professor in the stochastic operations
research group of the faculty of mathematics and computer science in Eind-
hoven. He is funded by a VENI grant of the Netherlands Organization for Sci-
entific Research (NWO). He is also a research fellow of EURANDOM. His
interests lie in applied probability, queueing theory and analysis, with possible
application to the performance analysis of computer systems and communica-
tion networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

